1. Consider the moral hazard model from class but now assume that the principal is risk averse in wealth. How does this change the first–order conditions characterizing the optimal contract for the case where the agent is risk averse and effort is observed?

2. Consider the moral hazard problem with three possible effort levels $E = \{e_1, e_2, e_3\}$ and two possible profit levels, $\pi_H = 10$ and $\pi_L = 0$. Let the probability of π_H given e be:

$$f(\pi_H | e) = \begin{cases}
2/3, & \text{if } e = e_1 \\
1/2, & \text{if } e = e_2 \\
1/3, & \text{if } e = e_3
\end{cases}$$

The agent’s cost function for effort is

$$g(e) = \begin{cases}
5/3, & \text{if } e = e_1 \\
8/5, & \text{if } e = e_2 \\
4/3, & \text{if } e = e_3
\end{cases}$$

The agent’s utility of wealth function is $v(w) = \sqrt{w}$. His reservation utility \bar{u} is zero.

What is the optimal contract when effort is observable?

3. Suppose both the principal and agent are risk neutral. The agent has two possible levels of effort, e_H and e_L. There is a probability that the project the agent is hired to carry out succeeds or fails where this probability depends on the agent’s effort. More specifically, if the agent chooses effort e_H, the project succeeds with probability 1. If he chooses e_L, the project succeeds with probability $p \in (0, 1)$ and fails otherwise. If the project succeeds, then profits are π_S. If it fails, profits are π_F where $\pi_S > \pi_F \geq 0$.

The agent’s payoff is $w - c$ if he chooses e_H and is paid w, while his payoff is w if he chooses e_L and is paid w. The principal’s payoff is $\pi - w$ if profits are π and he pays the agent w. The agent’s outside option is 0.
Find an optimal contract for the principal.

4. Consider a principal who earns profits from two different tasks undertaken by the agent. His profits from task 1, denoted π_1, depend randomly on the level of effort undertaken by the agent in task 1. More specifically, if the agent puts high effort e_H into task 1, then

$$\pi_1 = \begin{cases} A & \text{with probability } 1/2 \\ 0 & \text{otherwise.} \end{cases}$$

If the agent puts low effort (e_L) into task 1, then $\pi_1 = 0$ with probability 1. The principal’s profits from task 2, π_2, are a nonstochastic function of the agent’s effort on task 2. More specifically, if the agent puts high effort into task 2, then $\pi_2 = B$, while if he puts in low effort, $\pi_2 = C$ where $B > C$. The agent can only put high effort into at most one task. That is, the only possibilities are low effort on both tasks, e_H on task 1 and e_L on task 2, or e_H on task 2 and e_L on task 1. The agent’s payoff if he is paid w and puts high effort into one of the tasks is $\sqrt{w} - g$, while his payoff if he puts low effort into both tasks and is paid w is \sqrt{w}. The agent’s payoff if he does not work for this principal is 0. The principal is risk neutral.

Finally, assume that $A/2 > B - C > g^2$. In other words, the expected marginal value of high effort on task 1 is greater than the marginal value of high effort on task 2 and both are greater than the utility cost of high effort.

What is the first-best contract?