
A Unified View of Kernel k-means, Spectral Clustering and Graph

Cuts

Inderjit Dhillon, Yuqiang Guan and Brian Kulis

University of Texas at Austin

Department of Computer Sciences

Austin, TX 78712

UTCS Technical Report #TR-04-25

February 18, 2005

Abstract

Recently, a variety of clustering algorithms have been proposed to handle data that is not linearly

separable. Spectral clustering and kernel k -means are two such methods that are seemingly quite different.

In this paper, we show that a general weighted kernel k -means objective is mathematically equivalent to a

weighted graph partitioning objective. Special cases of this graph partitioning objective include ratio cut,

normalized cut and ratio association. Our equivalence has important consequences: the weighted kernel

k -means algorithm may be used to directly optimize the graph partitioning objectives, and conversely,

spectral methods may be used to optimize the weighted kernel k -means objective. Hence, in cases where

eigenvector computation is prohibitive, we eliminate the need for any eigenvector computation for graph

partitioning. Moreover, we show that the Kernighan-Lin objective can also be incorporated into our

framework, leading to an incremental weighted kernel k -means algorithm for local optimization of the

objective. We further discuss the issue of convergence of weighted kernel k -means for an arbitrary graph

affinity matrix and provide a number of experimental results. These results show that non-spectral

methods for graph partitioning are as effective as spectral methods and can be used for problems such

as image segmentation in addition to data clustering.

Keywords: Clustering, Graph Partitioning, Spectral Methods, Eigenvectors, Kernel k -means, Trace Maxi-
mization

1 Introduction

Clustering has received a significant amount of attention as an important problem with many applications,
and a number of different algorithms and methods have emerged over the years. In this paper, we unify
two well-studied but seemingly different methods for clustering data that is not linearly separable: kernel
k -means and graph partitioning.

The kernel k -means algorithm [1] is a generalization of the standard k -means algorithm [2]. By implicitly
mapping points to a higher-dimensional space, kernel k -means can discover clusters that are non-linearly
separable in input space. This provides a major advantage over standard k -means, and allows us to cluster
points if we are given a positive definite matrix of similarity values.

On the other hand, graph partitioning algorithms focus on clustering nodes of a graph [3, 4]. Spectral
methods have been used effectively for solving a number of graph partitioning objectives, including ratio
cut [5] and normalized cut [6]. Such an approach has been useful in many areas, such as circuit layout [5]
and image segmentation [6].

In this paper, we relate these two seemingly different approaches. In particular, we show that a weighted

form of the kernel k -means objective is mathematically equivalent to a general, weighted graph partitioning
objective. Such an equivalence has an immediate implication: we may use the weighted kernel k -means

1

Polynomial Kernel κ(ai,aj) = (ai · aj + c)d

Gaussian Kernel κ(ai,aj) = exp(−‖ai − aj‖
2/2α2)

Sigmoid Kernel κ(ai,aj) = tanh(c(ai · aj) + θ)

Table 1: Examples of popular kernel functions

algorithm to locally optimize a number of graph partitioning objectives, and conversely, spectral methods
may be employed for weighted kernel k -means. In cases where eigenvector computation is prohibitive (for
example, if many eigenvectors of a large matrix are required), the weighted kernel k -means algorithm may
be more desirable than spectral methods. In cases where eigenvector computation is feasible, we may use the
spectral methods for effective cluster initialization. Subsequently, our analysis implies that by an appropriate
choice of weights and kernel, we can use kernel k -means to monotonically improve specific graph partitioning
objectives, such as ratio cut, normalized cut, ratio association, and the Kernighan-Lin objective.

Though kernel k -means has the benefit of being able to cluster data that is not linearly separable, it
has never really caught on in the research community for specific applications. Some work has been done
on scaling kernel k -means to large data sets [7] but the algorithm has not been applied to many real-world
problems. Our result provides compelling evidence that weighted kernel k -means is in fact a powerful and
useful approach to clustering, especially for graph clustering.

After presenting the equivalence of kernel k -means and graph partitioning objectives, we discuss how to
guarantee monotonic convergence of the weighted kernel k -means algorithm for arbitrary graphs. Since the
adjacency matrix for an arbitrary graph may not be positive definite, we employ a diagonal shift to enforce
positive definiteness. We show that a suitable shift does not change the globally optimal solution to the
objective function. We then present experimental results on a number of interesting data sets, including
images, text data, and large graphs. We compare various initialization schemes to show that spectral
methods are not necessary for optimizing graph partitioning objectives. We show that image segmentation
using normalized cuts can be performed without eigenvector computation, and we present the effect of
diagonal shifts for text clustering.

A word about our notation. Capital letters such as A, X, and Φ represent matrices. Lower-case bold
letters such as a, b represent vectors. Script letters such as V and E represent sets. We use ‖a‖ to represent
the L2 norm of a vector, and ‖X‖F for the Frobenius norm of a matrix. Finally, a · b is the inner product
between vectors.

2 Kernel k-means

Given a set of vectors a1,a2, ...,an, the k -means algorithm seeks to find clusters π1, π2, ...πk that minimize
the objective function:

D({πc}
k
c=1) =

k
∑

c=1

∑

ai∈πc

‖ai − mc‖
2, where mc =

∑

ai∈πc
ai

|πc|
.

Note that the c-th cluster is denoted by πc, a clustering or partitioning by {πc}
k
c=1, while the centroid or

mean of cluster πc is denoted by mc.
A disadvantage to standard k -means is that clusters must be separated by a hyperplane; this follows

from the fact that squared Euclidean distance is used as the distortion measure. To counter this, kernel
k -means [1] uses a function to map points to a higher-dimensional feature space. When k -means is applied
in this feature space, the linear separators in the feature space correspond to nonlinear separators in the
input space.

The kernel k -means objective can be written as a minimization of:

D({πc}
k
c=1) =

k
∑

c=1

∑

ai∈πc

‖φ(ai) − mc‖
2, where mc =

∑

ai∈πc
φ(ai)

|πc|
.

2

If we expand the distance computation ‖φ(ai) − mc‖
2 in the objective function, we obtain the following:

φ(ai) · φ(ai) −
2
∑

aj∈πc
φ(ai) · φ(aj)

|πc|
+

∑

aj ,al∈πc
φ(aj) · φ(al)

|πc|2
.

Thus only inner products are used in the computation of the Euclidean distance between a point and a
centroid. As a result, if we are given a kernel matrix K, where Kij = φ(ai) ·φ(aj), we can compute distances
between points and centroids without knowing explicit representations of φ(ai) and φ(aj). It can be shown
that any positive semidefinite matrix K can be thought of as a kernel matrix [8].

A kernel function κ is commonly used to map the original points to inner products. See Table 1 for
commonly used kernel functions; κ(ai,aj) = Kij .

2.1 Weighted kernel k-means

We now introduce a weighted version of the kernel k -means objective function, first described in [9]. As we
will see later, the weights play a crucial role in showing an equivalence to graph partitioning. The weighted
kernel k -means objective function is expressed as:

D({πc}
k
c=1) =

k
∑

c=1

∑

ai∈πc

wi‖φ(ai) − mc‖
2, where mc =

∑

ai∈πc
wiφ(ai)

∑

ai∈πc
wi

,

and the weights wi are non-negative. Note that mc represents the “best” cluster representative since

mc = argmin
z

∑

ai∈πc

wi‖φ(ai) − z‖2.

As before, we compute distances only using inner products, since ‖φ(ai) − mc‖
2 equals

φ(ai) · φ(ai) −
2
∑

aj∈πc
wjφ(ai) · φ(aj)

∑

aj∈πc
wj

+

∑

aj ,al∈πc
wjwlφ(aj) · φ(al)

(
∑

aj∈πc
wj)2

. (1)

Using the kernel matrix K, the above may be rewritten as:

Kii −
2
∑

aj∈πc
wjKij

∑

aj∈πc
wj

+

∑

aj ,al∈πc
wjwlKjl

(
∑

aj∈πc
wj)2

. (2)

2.2 Computational Complexity

We now analyze the computational complexity of a simple weighted kernel k -means algorithm presented
as Algorithm 1. The algorithm is a direct generalization of standard k -means. As in standard k -means,
given the current centroids, the closest centroid for each point is computed. After this, the clustering is
re-computed. These two steps are repeated until the change in the objective function value is sufficiently
small. It can be shown that this algorithm monotonically converges as long as K is positive semi-definite so
that it can be interpreted as a Gram matrix.

It is clear that the bottleneck in the kernel k -means algorithm is Step 2, i.e., the computation of distances
d(ai,mc). The first term, Kii is a constant for ai and does not affect the assignment of ai to clusters. The
second term requires O(n) computation for every data point, leading to a cost of O(n2) per iteration. The
third term is fixed for cluster c, so in each iteration it can be computed once and stored; over all clusters,
this takes O(

∑

c |πc|
2) = O(n2) operations. Thus the complexity is O(n2) scalar operations per iteration.

However, for a sparse matrix K, each iteration can be adapted to cost O(nz) operations, where nz is the
number of non-zero entries of the matrix (nz = n2 for a dense kernel matrix). If we are using a kernel
function κ to generate the kernel matrix from our data, computing K usually takes time O(n2m), where m
is the dimensionality of the original points. If the total number of iterations is τ , then the time complexity
of Algorithm 1 is O(n2(τ + m)) if we are given data vectors as input, or O(nz · τ) if we are given a positive
definite matrix as input.

3

Algorithm 1: Basic Batch Weighted Kernel k-means.

Kernel kmeans Batch(K, k, w, tmax, {π
(0)
c }k

c=1, {πc}
k
c=1)

Input: K: kernel matrix, k: number of clusters, w: weights for each point, tmax: optional maximum number

of iterations, {π
(0)
c }k

c=1: optional initial clusters
Output: {πc}

k
c=1: final partitioning of the points

1. If no initial clustering is given, initialize the k clusters π
(0)
1 , ..., π

(0)
k (i.e., randomly). Set t = 0.

2. For each point ai and every cluster c, compute

d(ai,mc) = Kii −
2
∑

aj∈π
(t)
c

wjKij
∑

aj∈π
(t)
c

wj
+

∑

aj ,al∈π
(t)
c

wjwlKjl

(
∑

aj∈π
(t)
c

wj)2
.

3. Find c∗(ai) = argmincd(ai,mc), resolving ties arbitrarily. Compute the updated clusters as

π(t+1)
c = {a : c∗(ai) = c}.

4. If not converged or tmax > t, set t = t + 1 and go to Step 2; Otherwise, stop and output final clusters

{π
(t+1)
c }k

c=1.

3 Graph Partitioning

We now shift our focus to a seemingly very different approach to clustering data: graph partitioning. In
this model of clustering, we are given a graph G = (V, E , A), which is made up of a set of vertices V and a
set of edges E such that an edge between two vertices represents their similarity. The affinity matrix A is
|V| × |V| whose entries represent the weights of the edges (an entry of A is 0 if there is no edge between the
corresponding vertices).

Let us denote links(A,B) to be the sum of the edge weights between nodes in A and B. In other words,

links(A,B) =
∑

i∈A,j∈B

Aij .

Furthermore, let the degree of A be the links of nodes in A to all the vertices, i.e. degree(A) = links(A,V).
The graph partitioning problem seeks to partition the graph into k disjoint partitions or clusters V1, ...,Vk

such that their union is V. A number of different graph partitioning objectives have been proposed and stud-
ied, and we will focus on the most prominent ones.

Ratio Association. The ratio association (also called average association) objective [6] aims to maximize
within-cluster association relative to the size of the cluster. The objective can be written as

RAssoc(G) = max
V1,...,Vk

k
∑

c=1

links(Vc,Vc)

|Vc|
.

Ratio Cut. This objective [5] differs from ratio association in that it seeks to minimize the cut between
clusters and the remaining vertices. It is expressed as

RCut(G) = min
V1,...,Vk

k
∑

c=1

links(Vc,V \ Vc)

|Vc|
.

Kernighan-Lin Objective. This objective [10] is nearly identical to the ratio cut objective, except that
the partitions are required to be of equal size. Although this objective is generally presented for k = 2
clusters, we can easily generalize it for arbitrary k. For simplicity, we assume that the number of vertices
|V| is divisible by k. Then, we write the objective as

KLObj(G) = min
V1,...,Vk

k
∑

c=1

links(Vc,V \ Vc)

|Vc|
,

subject to |Vc| = |V|/k ∀c = 1, ..., k.

4

Normalized Cut. The normalized cut objective [6, 11] is one of the most popular graph partitioning
objectives and seeks to minimize the cut relative to the degree of a cluster instead of its size. The objective
is expressed as

NCut(G) = min
V1,...,Vk

k
∑

c=1

links(Vc,V \ Vc)

degree(Vc)
.

It should be noted that the normalized cut problem is equivalent to the normalized association problem [11],
since links(Vc,V \ Vc) = degree(Vc) − links(Vc,Vc).

General Weighted Graph Cuts/Association. We can generalize the association and cut problems
to more general weighted variants. This will prove useful for building a general connection to weighted
kernel k -means. We introduce a weight wi for each node of the graph, and for each cluster Vc, define
w(Vc) =

∑

i∈Vc
wi. We generalize the association problem to be:

WAssoc(G) = max
V1,...,Vk

k
∑

c=1

links(Vc,Vc)

w(Vc)
.

Similarly, for cuts:

WCut(G) = min
V1,...,Vk

k
∑

c=1

links(Vc,V \ Vc)

w(Vc)
.

Ratio association is a special case of WAssoc where all weights are equal to one (and hence the weight of a
cluster is simply the number of vertices in it), and normalized association is a special case where the weight
of a node i is equal to its degree (the sum of row i of the affinity matrix A). The same is true for WCut.

For the Kernighan-Lin objective, an incremental algorithm is traditionally used to swap chains of vertex
pairs; for more information, see [10]. For ratio association, ratio cut, and normalized cut, the algorithms
used to optimize the objectives involve using eigenvectors of the affinity matrix, or a matrix derived from
the affinity matrix. We will discuss these spectral solutions in the next section, where we prove that the
WAssoc objective is equivalent to the weighted kernel k -means objective, and that WCut can be viewed as
a special case of WAssoc, and thus as a special case of weighted kernel k -means.

4 Equivalence of the Objectives

At first glance, the two methods of clustering presented in the previous two sections appear to be quite
unrelated. In this section, we express the weighted kernel k -means objective as a trace maximization problem.
We then show how to rewrite the weighted graph association and graph cut problems identically as matrix
trace maximizations. This will show that the two objectives are mathematically equivalent. We discuss the
connection to spectral methods, and then show how to enforce positive definiteness of the affinity matrix in
order to guarantee convergence of the weighted kernel k -means algorithm. Finally, we extend our analysis
to the case of dissimilarity matrices.

4.1 Weighted Kernel k-means as Trace Maximization

We first consider the weighted kernel k -means objective, and express it as a trace maximization problem.
Let sc be the sum of the weights in cluster c, i.e. sc =

∑

ai∈πc
wi. Define the n × k matrix Z:

Zic =

{

1

s
1/2
c

if ai ∈ πc,

0 otherwise.

Clearly, the columns of Z are mutually orthogonal as they capture the disjoint cluster memberships. Suppose
Φ is the matrix of all φ(a) vectors, and W is the diagonal matrix of the weights. It can then be verified that
column i of the matrix ΦWZZT is equal to the mean vector of the cluster that contains ai.

5

Thus, the weighted kernel k -means objective may be written as:

D({πc}
k
c=1) =

k
∑

c=1

∑

ai∈πc

wi‖φ(ai) − mc‖
2

=

n
∑

i=1

wi‖Φ·i − (ΦWZZT)·i‖
2,

where Φ·i denotes the i-th column of the matrix Φ. Let Ỹ = W 1/2Z; observe that Ỹ is an orthonormal
matrix (Ỹ T Ỹ = Ik). Then we write the objective function as:

D({πc}
k
c=1) =

n
∑

i=1

wi‖Φ·i − (ΦW 1/2Ỹ Ỹ T W−1/2)·i‖
2

=

n
∑

i=1

‖Φ·iw
1/2
i − (ΦW 1/2Ỹ Ỹ T)·i‖

2

= ‖ΦW 1/2 − ΦW 1/2Ỹ Ỹ T ‖2
F .

Using the fact that trace(AAT) = trace(AT A) = ‖A‖2
F , trace(A+B) = trace(A) + trace(B) and trace(AB)

= trace(BA), we have that D({πc}
k
c=1) =

trace(W 1/2ΦT ΦW 1/2 − W 1/2ΦT ΦW 1/2Ỹ Ỹ T

−Ỹ Ỹ T W 1/2ΦT ΦW 1/2 + Ỹ Ỹ T W 1/2ΦT ΦW 1/2Ỹ Ỹ T)

= trace(W 1/2ΦT ΦW 1/2) − trace(Ỹ T W 1/2ΦT ΦW 1/2Ỹ).

We note that the kernel matrix K is equal to ΦT Φ, and that trace(W 1/2KW 1/2) is a constant. Therefore,
the minimization of the weighted kernel k -means objective function is equivalent to:

max
Ỹ

trace(Ỹ T W 1/2KW 1/2Ỹ), (3)

where Ỹ is an orthonormal n × k matrix that is proportional to the square root of the weight matrix W as
detailed above.

4.2 Graph Partitioning as Trace Maximization

With this derivation complete, we can now show how each of the graph partitioning objectives may be
written as a trace maximization as well.

Ratio Association. The simplest objective to transform into a trace maximization is ratio association.
Let us introduce an indicator vector xc for partition c, i.e. xc(i) = 1 if cluster c contains vertex i. Then the
ratio association objective equals

max

{ k
∑

c=1

links(Vc,Vc)

|Vc|
=

k
∑

c=1

xT
c Axc

xT
c xc

=

k
∑

c=1

x̃T
c Ax̃c

}

,

where A is the graph affinity matrix and x̃c = xc/(xT
c xc)

1/2. The equalities hold since xT
c xc gives us the

size of partition c, while xT
c Axc equals the links inside partition c.

The above can be written as the maximization of trace(X̃T AX̃), where the c-th column of X̃ equals x̃c;
clearly X̃T X̃ = Ik. It is easy to verify that this maximization is equivalent to the trace maximization for
weighted kernel k -means (Equation 3), where all weights are equal to one, and the affinity matrix is used in
place of the kernel matrix.

Since the trace maximization for ratio association is equivalent to the trace maximization for weighted
kernel k -means, we can run weighted kernel k -means on the affinity matrix to monotonically optimize the

6

ratio association in the graph. However, it is important to note that we require the affinity matrix to be
positive definite. This ensures that the affinity matrix can be viewed as a kernel matrix and factored as
ΦT Φ, thus allowing us to prove that the kernel k-means objective function decreases at each iteration. If
the matrix is not positive definite, then we will have no such guarantee (positive definiteness is a sufficient
but not necessary condition for convergence). We will see later in this section how to remove this requirement.

Ratio Cut. Next we consider the ratio cut problem:

min

k
∑

c=1

links(Vc,V \ Vc)

|Vc|
.

Let us define a diagonal degree matrix D with Dii =
∑n

j=1 Aij . Using the indicator vector xj from before,
we can easily verify that the objective function can be rewritten as:

min

{ k
∑

c=1

xT
c (D − A)xc

xT
c xc

=
k

∑

c=1

x̃T
c (D − A)x̃c

}

,

where x̃c is defined as before. The matrix D − A is known as the Laplacian of the graph, so we write
it as L. Hence, we may write the problem as a minimization of trace(X̃T LX̃). We convert this into
a trace maximization problem by considering the matrix I − L, and noting that trace(X̃T (I − L)X̃) =
trace(X̃T X̃)− trace(X̃T LX̃). Since X̃ is orthonormal, trace(X̃T X̃) = k, so maximizing trace(X̃T (I −L)X̃)
is equivalent to the minimization of trace(X̃T LX̃).

Putting this all together, we have arrived at an equivalent trace maximization problem for ratio cut:
minimizing the ratio cut for the affinity matrix is equivalent to maximizing trace(X̃T (I −L)X̃). Once again,
this corresponds to unweighted kernel k -means, except that the matrix K is I − L. We will see how to deal
with the positive definiteness issue later.

Kernighan-Lin Objective. The Kernighan-Lin (K-L) graph partitioning objective follows easily from the
ratio cut objective. For the case of K-L partitioning, we maintain equally sized partitions, and hence the
only difference between the ratio cut and K-L partitioning is that the xc indicator vectors are constrained to
be of size |V|/k. If we start with equally sized partitions, an incremental weighted kernel k -means algorithm
(where we only consider swapping points, or chains of points, that improve the objective function) can be
run to simulate the Kernighan-Lin algorithm.

Normalized Cut. We noted earlier that the normalized cut problem is equivalent to the normalized
association problem; i.e., the problem can be expressed as:

max

{ k
∑

c=1

links(Vc,Vc)

degree(Vc)
=

k
∑

c=1

xT
c Axc

xT
c Dxc

=
k

∑

c=1

x̃T
c Ax̃c

}

,

where x̃c = xc/(xT
c Dxc)

1/2.
The above may be re-written as trace(Ỹ T D−1/2AD−1/2Ỹ), where Ỹ = D1/2X̃, and is orthonormal. In

this case, we set the weighted kernel k -means weight matrix W = D and the matrix K equal to D−1AD−1.
Then, if the matrix K is positive definite, we have a way to iteratively minimize the normalized cut using
weighted kernel k -means. Note that the seemingly simpler choice of W = D−1 and K = A does not result
in a direct equivalence since Ỹ is a function of the partition and the weights.

General Weighted Graph Cuts/Association. More generally, the weighted association problem can be
expressed as a trace maximization:

max

{ k
∑

c=1

links(Vc,Vc)

w(Vc)
=

k
∑

c=1

xT
c Axc

xT
c Wxc

=

k
∑

c=1

x̃T
c Ax̃c

}

,

where x̃c = xc(x
T
c Wxc)

−1/2. With Y = W 1/2X̃, this simplifies to

WAssoc(G) = max
Y

trace(Y T W−1/2AW−1/2Y). (4)

7

Our analysis easily extends to the WCut problem. Using the same notation for W and xc, we write the
problem as:

WCut(G) = min

k
∑

c=1

xT
c (D − A)xc

xT
c Wxc

= min

k
∑

c=1

x̃T
c Lx̃c

= min
Y

trace(Y T W−1/2LW−1/2Y).

The WCut problem can be expressed as WAssoc by noting that

trace(Y T W−1/2(W − L)W−1/2Y)

= k − trace(Y T W−1/2LW−1/2Y),

and therefore the WCut problem is equivalent to maximizing trace(Y T W−1/2(W − L)W−1/2Y). Hence,
optimizing WAssoc on the graph affinity matrix W − L is equivalent to optimizing WCut on A.

We observed that Ỹ from the previous section is an orthornormal matrix; in particular,

Ỹic =

{

w
1/2
i

s
1/2
c

if i ∈ πc,

0 otherwise,

where sc = xT
c Wxc. It is easy to see that the matrix Y in this section is idential to Ỹ from Section IV-

A. Then the trace maximization for weighted kernel k -means equals trace(Ỹ T W−1/2AW−1/2Ỹ), which is
exactly the trace maximization for weighted graph association from Equation 4. In the other direction, given
a kernel matrix K and a weight matrix W , define an affinity matrix A = WKW to obtain the equivalence.
We see that it is easy to map from one problem to the other.

4.3 The Spectral Connection

A standard result in linear algebra [12] states that if we relax the trace maximizations in Equations 3 and 4
such that Y is an arbitrary orthonormal matrix, then the optimal Y is of the form VkQ̂, where Vk consists
of the leading k eigenvectors of W 1/2KW 1/2 and Q̂ is an arbitrary k × k orthogonal matrix. As these
eigenvectors are not indicator vectors, we must then perform postprocessing on the eigenvectors to obtain a
discrete clustering of the points, which we discuss in Section 5.

Using this result, spectral algorithms that compute and use the leading k eigenvectors of W 1/2KW 1/2

have almost exclusively been used to optimize graph partitioning objectives, such as ratio cut [5] and nor-
malized cut [6, 11]. In the same spirit, spectral algorithms have recently been used for data clustering [13].
However, our equivalence shows that spectral solutions are not necessary.

Before we proceed further by validating our theoretical results with experiments, we show how to enforce
positive definiteness for graph partitioning problems.

4.4 Enforcing Positive Definiteness

For weighted graph association, we define a matrix K = W−1AW−1 to map to weighted kernel k -means.
However, when A is an arbitrary adjacency matrix, W−1AW−1 need not be positive definite and hence
Algorithm 1 will not necessarily converge. In this section, we show how to avoid this problem by introducing
a diagonal shift to K. Furthermore, we discuss how such a diagonal shift affects the practical performance
of the weighted kernel k -means algorithm.

Given A, define K ′ = σW−1 + W−1AW−1, where σ is a constant large enough to ensure that K ′ is
positive definite. Since W−1 is a diagonal matrix, adding σW−1 adds positive entries to the diagonal of
W−1AW−1. If we plug K ′ into the trace maximization for weighted kernel k -means (Equation 3), we get

8

Objective Node Weights Kernel
Ratio Association 1 for all nodes K = σI + A
Ratio Cut 1 for all nodes K = σI − L
Kernighan-Lin 1 for all nodes K = σI − L
Normalized Cut Degree of the node K = σD−1 + D−1AD−1

Table 2: Popular graph partitioning objectives and corresponding weights and kernels given affinity matrix
A

the following:

trace(Ỹ T W 1/2K ′W 1/2Ỹ)

= trace(Ỹ T W 1/2σW−1W 1/2Ỹ)

+trace(Ỹ T W 1/2W−1AW−1W 1/2Ỹ)

= σk + trace(Ỹ T W−1/2AW−1/2Ỹ).

Hence, maximizing Ỹ using K ′ is identical to that of the weighted association problem (Equation 4), except
that K ′ is constructed to be positive definite. Running weighted kernel k -means on K ′ results in monotonic
optimization of the weighted association objective.

A similar approach can be used for the weighted cut problem. We showed earlier how WCut on affinity
matrix A is equivalent to WAssoc on W − L. Hence, if we let A′ = W − L, it follows that defining
K ′ = σW−1 + W−1A′W−1 for large enough σ gives us a positive definite kernel for the weighted kernel
k -means algorithm. In Table 2, the weights and kernels for several graph objectives are summarized.

However, although adding a diagonal shift does not change the global optimal clustering, it is important
to note that adding too large a shift may result in a decrease in quality of the clusters produced by Algorithm
1. To illustrate this, consider the case of ratio association, where the node weights equal 1. Given an affinity
matrix A, we define a kernel K = σI + A for sufficiently large σ. In the assignment step of Algorithm 1, we
consider the distance from points to all centroids.

First, using Equation 2, let us calculate the distance from ai to the centroid of πc given this σ shift,
assuming that ai is in πc:

Kii + σ −
2
∑

aj∈πc
Kij + 2σ

|πc|
+

∑

aj ,al∈πc
Kjl + |πc|σ

|πc|2
.

This simplifies to:

Kii −
2
∑

aj∈πc
Kij

|πc|
+

∑

aj ,al∈πc
Kjl

|πc|2
+ σ −

σ

|πc|
.

Notice that this is the original (pre-shift) distance from ai to the centroid of πc plus σ − σ/|πc|.
Secondly, we calculate this distance assuming that ai is not in πc:

Kii + σ −
2
∑

aj∈πc
Kij

|πc|
+

∑

aj ,al∈πc
Kjl + |πc|σ

|πc|2
.

This simplifies to

Kii −
2
∑

aj∈πc
Kij

|πc|
+

∑

aj ,al∈πc
Kjl

|πc|2
+ σ +

σ

|πc|
.

This is the original distance from ai to the centroid of πc plus σ + σ/|πc|.
We see, therefore, that as we increase σ, points tend to become relatively closer to their own centroid. As

a result, during the assignment step in the weighted kernel k -means algorithm, points are less and less likely
to move to other centroids as σ gets larger. Another important observation is that the relative change in
distance due to increasing σ is inversely proportional to cluster size, and so the problem of becoming stuck
in local optima is greater for small clusters.

9

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Results using three different cluster initialization methods. Left: random initialization; Middle:
spectral initialization; Right: random initialization on a kernel with σ = −1

It is natural to ask the following question: since weighted kernel k -means can perform poorly with a large
positive σ shift, what happens when we add a negative σ shift? This is akin to reducing “self-similarity” of
points, thereby magnifying the similarity to other points. Clearly, we cannot theoretically guarantee that
the algorithm will always converge, since the kernel matrix will be indefinite. However, we have seen that, in
practice, kernel k -means often converges and in fact, yields superior local opitmal solutions when run with
a negative shift. For example, consider a data set consisting of two circles as shown in Figure 1. We used
an exponential kernel to generate an affinity matrix (2α2 = 0.05). Then we clustered the points in three
different ways: a) kernel k -means with random initialization, b) kernel k -means using a ratio association
spectral clustering algorithm for cluster initialization, c) kernel k -means using random initialization and a
kernel with a σ = −1 shift. Figure 1 shows that, in this simple case, the negative shift is the only algorithm
to achieve perfect clustering results. Thus, it appears that for some graph partitioning problems, it may be
better to run weighted kernel k -means using an indefinite matrix, at least as an initialization step; as the
algorithm may not converge, running kernel k -means for a set number of iterations on an indefinite matrix is
a strong initialization technique. A good choice for σ is one that makes the trace of the kernel matrix equal
to zero.

4.5 Distance Matrices and Graph Cuts

In many applications, distance (or dissimilarity) matrices arise naturally instead of similarity matrices. We
now take a short digression to expand our analysis to this case.

It is well known ([14], Sec. 10.7.2) that the standard k -means objective function to be minimized may
be written in the following way:

k
∑

c=1

∑

ai∈πc

‖ai − mc‖
2 =

k
∑

c=1

∑

ai,aj∈πc

‖ai − aj‖
2

|πc|
.

Given a matrix E, such that Eij = ‖ai − aj‖
2, we can think of E as an adjacency matrix. If we denote

clusters as V1, ...,Vk, then we can write this objective as:

min
V1,...,Vk

k
∑

c=1

links(Vc,Vc)

|Vc|
.

This is just the minimum ratio association problem on the graph defined by the distance matrix E (as
opposed to the maximization problem in Equation 4 for a graph affinity matrix). Given such a distance
matrix, we may like to be able to locally optimize the k -means objective function, even if we do not have an
explicit coordinate representation of the points.

In a more general setting, we may need to either minimize a weighted association problem, or maximize
a weighted cut problem. These problems could arise in any setting in which edges of a graph matrix E
represent dissimilarity, not similarity.

10

We can easily extend the analysis we gave earlier for this setting. Minimizing the weighted association,
a problem we will call MinWAssoc, is expressed as:

MinWAssoc(G) = minimize trace(Y T W−1/2EW−1/2Y).

The only difference between MinWAssoc and WAssoc is the minimization. The same trick that we used for
WCut applies here: letting E′ = σW −W−1/2EW−1/2 results in an equivalent trace maximization problem.
The value of σ is chosen to be sufficiently large such that E′ is positive definite (and hence E need not be
positive definite).

For maximizing the weighted cut, we note that MaxWCut is written as:

MaxWCut(G) = maximize trace(Y T W−1/2LW−1/2Y).

This is equivalent to WAssoc, with the Laplacian L of E, in place of A. Again, a diagonal shift may be
necessary to enforce positive definiteness.

Thus, handling minimum association and maximum cut problems on dissimilarity matrices follows easily
from our earlier analysis.

5 Putting it All Together

In this section, we touch on a few important remaining issues. As mentioned earlier, spectral methods can
be used as an initialization step for graph partitioning objectives. We discuss two methods for obtaining
a discrete clustering from eigenvectors, and then generalize these methods to obtain initial clusterings for
weighted kernel k -means.

To further improve the quality of results obtained using kernel k -means, we examine the use of local
search. Local search is an effective way to avoid local optima, and can be implemented efficiently in kernel
k -means.

Combining both of these strategies, we arrive at our final, enhanced algorithm for weighted kernel k -means
in Section 5.3.

5.1 From Eigenvectors to a Partitioning

Bach and Jordan Postprocessing. Denote U as the n×k matrix of the k leading eigenvectors of W 1/2KW 1/2,
obtained by solving the relaxed trace maximization for weighted kernel k -means. The Bach and Jordan
method [15] was presented to obtain partitions from eigenvectors in the context of minimizing the normalized
cut. Below, we generalize this method to cover all weighted kernel k -means cases. The method compares the
subspace spanned by the columns of U with the subspace spanned by the columns of Y , the desired n × k
orthonormal indicator matrix. We seek to find a Y with the given structure that minimizes ‖UUT −Y Y T ‖2

F ,
thus comparing the orthogonal projection corresponding to the subspaces spanned by U and Y . We rewrite
the minimization as:

‖UUT − Y Y T ‖2
F

= trace(UUT + Y Y T − UUT Y Y T − Y Y T UUT)

= 2k − 2trace(Y T UUT Y).

Hence, the task is equivalent to maximizing trace(Y T UUT Y). The equivalence of this step to weighted
kernel k -means can be made precise as follows: the kernel k -means objective function can be written as a
maximization of trace(Y T W 1/2KW 1/2Y). Since Y is a function of the partition and the weights W , we set
K = W−1/2UUT W−1/2, and the objective function for weighted kernel k -means with this K is therefore
written as a maximization of trace(Y T UUT Y). Hence, we may use weighted kernel k -means to obtain
partitions from the eigenvectors.

To summarize, after obtaining the eigenvector matrix U , we can iteratively minimize ‖UUT − Y Y T ‖2
F

by running weighted k -means on the rows of W−1/2U , using the original weights. Note: we do not have to
explicitly compute the kernel matrix W−1/2UUT W−1/2 since the kernel is already given in factored form.

11

Yu and Shi Postprocessing. An alternative method for spectral postprocessing of normalized cuts was pro-
posed by Yu and Shi [11]. We briefly describe and generalize this method below.

As before, let U be the n × k matrix of the k leading eigenvectors of W 1/2KW 1/2. Given U , the goal of
this method is to find the 0-1 partition matrix X which is closest to U , over all possible orthogonal k × k
orthogonal matrices Q. This may be accomplished as follows. Form the matrix X∗, which is U with the
rows normalized to have L2 norm 1. Given this matrix, we seek to find a true partition matrix that is close
to X∗. We therefore minimize ‖X − X∗Q‖2 over all partition matrices X and square orthonormal Q. An
alternate minimization procedure is then used to locally optimize this objective. Weights play no role in the
procedure.

The alternate minimization procedure is performed as follows: to minimize ‖X − X∗Q‖2, where Q is
fixed, we compute

Xil =

{

1 if l = argmaxk(X∗Q)ik

0 otherwise

for all i. Similarly, when X is fixed, we compute the optimal Q as follows: compute the singular value
decomposition of XT X∗ = UΣV T , and set Q = V UT . We alternate updating X and Q until convergence.

We note that we may express the Yu and Shi objective as ‖X −X∗Q‖2 = ‖X∗ −XQT ‖2. The standard
k -means objective function can be expressed as a minimization of ‖A − XB‖2, where A is the input data
matrix, X is a 0-1 partition matrix, and B is an arbitrary matrix. Thus, the Yu and Shi objective is nearly
identical to k -means, with the only difference arising from the restriction on Q that it be an orthonormal
matrix.

5.2 Local Search

A common problem when running standard batch k -means or batch kernel k -means is that the algorithm
has the tendency to be trapped into qualitatively poor local optima.

An effective technique to counter this issue is to use local search [16] during the algorithm by incorporating
incremental weighted kernel k -means into the standard batch algorithm. A step of incremental kernel k -
means attempts to move a single point from one cluster to another in order to improve the objective function.
For a single move, we look for the move that causes the greatest decrease in the value of the objective function.
For a chain of moves, we look for a sequence of such moves. The set of local optima using local search is a
superset of the local optima using the batch algorithm. Often, this enables the algorithm to reach a much
better local optima. Details can be found in [16].

It has been shown in [16] that incremental k -means can be implemented efficiently. Such an implementa-
tion can be easily be extended to weighted kernel k -means. In practice, we alternate between doing standard
batch updates and incremental updates.

The Kernighan-Lin objective can also be viewed as a special case of the weighted kernel k -means objective
(the objective is the same as ratio cut except for the cluster size restrictions), but running weighted kernel
k -means provides no guarantee about the size of the partitions. We may still optimize the Kernighan-Lin
objective, using a local search-based approach based on swapping points: if we perform only local search steps
via swaps during the weighted kernel k -means algorithm, then cluster sizes remain the same. An approach
to optimizing Kernighan-Lin would therefore be to run such an incremental kernel k -means algorithm using
chains of swaps. This approach is very similar to the usual Kernighan-Lin algorithm [10]. Moreover, spectral
initialization could be employed, such that during spectral postprocessing, an incremental k -means algorithm
is used on the eigenvector matrix to obtain initial clusters.

5.3 Final Algorithm

Putting everything togther, our final algorithm consists of four stages. First, we set the weights and kernel.
If weights are given as an input, we assume that the input matrix is the kernel matrix (this would handle
cases such as weighted association with arbitrary weights). Otherwise, if a standard graph partitioning
objective is being used, we appropriately set the weights and the kernel matrix. The intial clusters can
also be specified as an input. Otherwise, we perform initialization using random initialization, spectral
initialization, initialization based on a negative σ shift, or initialization by METIS. METIS [17] is a fast,
multi-level graph partitioning algorithm that produces equally-sized clusters. Other initialization schemes

12

Document data sets C30 C150 C300
Percentage of zero entries 30% 36% 35%
Average similarity between documents .04 .02 .02

Table 3: Self-similarity of documents is much higher than similarity between different documents

Data sets C30 C150 C300
Average NMI (σ = 0) .075 .02 .11
Average NMI (σ = −1) .6 .64 .62

Table 4: Comparison of NMI values achieved by Algorithm 1 before and after σ shift

could easily be added to this list. After we obtain initial clusters, we make K positive definite by adding to
the diagonal. Finally, we oscillate between running batch weighted kernel k -means and incremental weighted
kernel k -means (local search) until convergence.

6 Experimental Results

In previous sections, we presented a unified view of graph partitioning and weighted kernel k -means. Now
we experimentally illustrate some implications of our results. Specifically, we show that 1) a negative σ
shift on the diagonal of the kernel matrix can significantly improve clustering results in document clustering
applications; 2) graph partitioning using the final algorithm of Section 5.3 gives an improvement over spectral
methods, when spectral initialization is used, and in some cases, METIS initialization is as effective as spectral
initialization; 3) normalized cut image segmentation can be performed without the use of eigenvectors.

Our algorithms are implemented in MATLAB. When random initialization is used, we report the average
results over 10 runs. All the experiments are performed on a Linux machine with 2.4GHz Pentium IV
processor and 1GB main memory.

6.1 Document clustering

In document clustering, it has been observed that when similarity of documents with the cluster that they
belong to is dominated by their self-similarity (similarity of documents with themselves), clustering algo-
rithms can generate poor results [16]. In a kernel matrix that describes pairwise similarity of documents, a
negative σ shift on the diagonal, as we discussed in Section 6.4, reduces the self-similarity of documents. We
show that this can improve performance as compared to no negative shift on text data.

The three document sets that we use are C30, C150 and C300 [16]. They are created by an equal sampling
of the MEDLINE, CISI, and CRANFIELD collections (available from ftp://ftp.cs.cornell.edu/pub/smart).
The sets C30, C150 and C300 contain 30, 150 and 300 documents and are of 1073, 3658 and 5577 dimensions,
respectively. The document vectors are normalized to have L2 norm 1.

Since we know the underlying class labels, to evaluate clustering results we can form a confusion matrix,

where entry (i, j), n
(j)
i gives the number of documents in cluster i and class j. From such a confusion matrix,

we compute normalized mutual information (NMI) [9] as

2
∑k

l=1

∑c
h=1

n
(h)
l

n log

(

n
(h)
l n

Pk
i=1 n

(h)
i

Pc
i=1 n

(i)
l

)

H(π) + H(ζ)
,

where c is the number of classes, ni is the number of documents in cluster i, n(j) is the number of documents

in class j, H(π) = −
∑k

i=1
ni

n log
(

ni

n

)

, and H(ζ) = −
∑c

j=1
n(j)

n log
(

n(j)

n

)

. A high NMI value indicates that

the clustering and true class label match well.
We first compute the Gram matrix for each document set. Table 3 shows that more than 30% of the

matrix entries are zero and the average similarity between documents (their cosine value) entries is between

13

Graph name No. of nodes No. of edges Description
DATA 2851 15093 finite element mesh
3ELT 4720 13722 finite element mesh
UK 4824 6837 finite element mesh
ADD32 4960 9462 32-bit adder
WHITAKER3 9800 28989 finite element mesh
CRACK 10240 30380 finite element mesh
FE 4ELT2 11143 32818 finite element mesh
MEMPLUS 17758 54196 memory circuit
BCSSTK30 28294 1007284 stiffness matrix

Table 5: Test graphs

0.02 and 0.04. Compared to a self-similarity of 1, the similarities between different documents are much lower.
We run Algorithm 1 with random initialization 100 times on the three Gram matrices. 97 out of 100 runs
stop immediately after initialization, resulting in very poor NMI values. The relatively high self-similarity
makes each document much closer to its own cluster than to other clusters and therefore no documents are
moved after initialization. A similar observation was made in [16], where local search was used to fix this
problem. Here we apply the negative σ shift strategy by subtracting 1 from every diagonal entry of the Gram
matrices (note that the average of the trace of the Gram matrix equals 1). We then run Algorithm 1 on the
modified matrices 100 times, and observe that documents move among clusters after random initialization
in all runs, resulting in much higher average NMI values. Table 4 shows the comparisons of averaged NMI
values over 100 random runs before and after we do the σ shift. Perfect clustering results are achieved
for all three data sets if we add local search to our algorithm. In all the experiments in the following two
subsections, we add local search to Algorithm 1 to improve the final clustering.

6.2 Graph partitioning

As we showed in earlier sections, weighted kernel k -means can be used to optimize various objectives, such
as ratio association or normalized association, given the proper weights. Moreover, the algorithm takes
an initial clustering and improves the objective function value. In our experiments in this subsection, we
evaluate improvement in ratio association and normalized association values by Algorithm 1 using three
different initialization methods: random, METIS and spectral. Randomly assigning a cluster membership
to each data point is simple but often gives poor initial objective function value. We measure how much
our algorithm improves the poor initial objective values and use results from random initialization as a
baseline in our comparisons. METIS is a fast, multi-level graph partitioning algorithm which seeks balanced
partitions while minimizing the cut value. We use the output of METIS to initialize Algorithm 1. Spectral
algorithms are often used for initialization because they produce clusterings which are presumably ‘close’ to
the global optimal solution. We use Yu and Shi’s method described in Section 5.1 for spectral initialization.

Table 5 lists 9 test graphs from various sources and different application domains. Some of them are
benchmark matrices used to test METIS. All the graphs are downloaded from http://staffweb.cms.gre.

ac.uk/~c.walshaw/partition/.
We generate 32, 64 and 128 clusters for each graph using the three different initialization methods

mentioned above and compute the initial and final objective values. Figure 2 and Tables 6-7 show the results
for ratio association. Note that we leave BCSSTK30 out of Figure 2 because compared to the other graphs
its ratio association values are out of scale, but the reader can refer to Table 6 for the final ratio association
values of BCSSTK30. The plots in Figure 2 show that in all cases the initial ratio association values using
random initialization are much poorer than those using METIS or spectral, which illustrates that the latter
two are better initialization methods. However, because our algorithm boosts the ratio association values
substantially with random initialization, the final ratio association values using random initialization for
some graphs, such as ADD32 and MEMPLUS, are very close to those using METIS or spectral. Between
METIS and spectral, Figure 2 and Table 6 show that Algorithm 1 achieves comparable final ratio association
values for nearly all graphs when using either METIS or spectral initialization. Also note that with METIS

14

 data 3elt uk add32 whitaker3 crack fe_4elt2 memplus
0

50

100

150

200

250

300

350

R
a
ti
o
 A

s
s
o
c
ia

ti
o
n
 v

a
lu

e

initial (random)
final (random)
initial (METIS)
final (METIS)
initial (spectral)
final (spectral)

 data 3elt uk add32 whitaker3 crack fe_4elt2 memplus
0

100

200

300

400

500

600

R
a

ti
o

 A
s
s
o

c
ia

ti
o

n
 v

a
lu

e

 data 3elt uk add32 whitaker3 crack fe_4elt2 memplus
0

100

200

300

400

500

600

700

800

900

1000

R
a
ti
o
 A

s
s
o
c
ia

ti
o
n
 v

a
lu

e

Figure 2: Plots of initial and final ratio association values for 32 clusters (left), 64 clusters (middle) and 128
clusters (right) generated using random, METIS and spectral initialization

32 clusters 64 clusters 128 clusters
Graph Rand METIS Spec Rand METIS Spec Rand METIS Spec
DATA 265.9 297.5 317.8 506.7 543.1 566.5 921.1 956.4 976.4
3ELT 125.5 171.9 172.3 246.8 327.1 328.4 471.4 608.5 612.8
UK 15.6 86.4 87.7 32.3 168.8 171.4 60.9 323.3 328.7
ADD32 109.2 126.1 119.1 215.5 259.7 252.4 411.4 433.5 471.8
WHITAKER3 123.7 177.4 177.9 239.2 342.4 344.4 469.0 653.1 654.8
CRACK 134.2 177.9 178.3 261.5 344.5 346.3 509.5 656.1 667.7
FE 4ELT2 125.8 178.4 176.2 246.1 345.5 344.4 479.9 662.0 663.5
MEMPLUS 215.5 240.5 239.8 315.3 356.3 343.0 507.6 556.3 505.0
BCSSTK30 1710.7 2050.5 2053.4 3263.2 3862.8 3900.9 6123.3 6922.7 7101.7

Table 6: Final ratio association values achieved using random, metis and spectral initialization

32 clusters 64 clusters 128 clusters
Initialization min max mean min max mean min max mean
Random 464.23 3446.2 2188.7 1039.9 5810.3 4144.2 2201.2 10853 7903.1
METIS .06 78.24 11.03 .16 41.69 7.33 .51 18.78 3.32
Spectral .22 86.58 11.56 .29 36.44 6.67 .58 21.85 4.85

Table 7: Min, max and mean percentage increase in ratio association over the 9 graphs listed in Table 5 that
is generated by our algorithm using random, metis or spectral initialization

15

 data 3elt uk add32 whitaker3 crack fe_4elt2 memplus bcsstk30
0

5

10

15

20

25

30

35
N

o
rm

a
li
z
e

d
 a

s
s
o

c
ia

ti
o

n
 v

a
lu

e

initial (random)
final (random)
initial (METIS)
final (METIS)
initial (spectral)
final (spectral)

 data 3elt uk add32 whitaker3 crack fe_4elt2 memplus bcsstk30
0

10

20

30

40

50

60

70

N
o

rm
a

li
z
e

d
 a

s
s
o

c
ia

ti
o

n
 v

a
lu

e

 data 3elt uk add32 whitaker3 crack fe_4elt2 memplus bcsstk30
0

20

40

60

80

100

120

N
o
rm

a
li
z
e
d
 a

s
s
o
c
ia

ti
o
n
 v

a
lu

e

Figure 3: Plots of initial and final normalized association values of 32 clusters (left), 64 clusters (middle)
and 128 clusters (right) generated using random, METIS and spectral initialization

32 clusters 64 clusters 128 clusters
Graph Rand METIS Spec Rand METIS Spec Rand METIS Spec
DATA 23.68 27.99 28.75 45.51 51.91 53.20 85.14 91.84 95.78
3ELT 21.82 29.62 29.77 42.34 56.47 56.89 81.68 105.08 106.14
UK 5.83 30.52 31.03 11.19 59.66 60.86 20.76 114.29 117.00
ADD32 26.46 31.10 31.26 51.62 60.47 61.66 99.07 114.29 119.40
WHITAKER3 21.02 30.03 30.12 40.46 58.02 58.54 79.56 110.58 112.10
CRACK 22.67 30.04 30.24 44.26 58.17 58.70 86.03 110.71 111.83
FE 4ELT2 21.32 30.28 30.23 42.03 58.69 58.58 82.22 112.59 111.86
MEMPLUS 19.62 25.14 26.65 39.27 49.60 50.69 84.21 98.64 100.20
BCSSTK30 22.95 28.12 28.80 44.38 52.32 54.15 84.74 95.41 98.54

Table 8: Final normalized association values achieved using random, metis and spectral initialization

or spectral initialization, Algorithm 1 increases the ratio association value of MEMPLUS by 78-87% in the
case of 32 clusters, 36-42% in case of 64 clusters and 19-22% in case of 128 clusters, respectively. Spectral
methods are used in many applications because they generate high-quality clustering results. However,
computing a large number of eigenvectors is computationally expensive and sometimes convergence is not
achieved by the MATLAB sparse eigensolver. We see that for ratio association, our algorithm, with fast
initialization using METIS, achieves comparable clustering results without computing eigenvectors at all.

Results on normalized association values are shown in Figure 3 and Tables 8-9. In all cases, the final
normalized association values by random initialization are consistently lower than those achieved by METIS
and spectral, which proves again that METIS and spectral are better initialization methods (note that the
normalized association values are bounded by the number of clusters). However, when random initialization
is used, Algorithm 1 is able to increase association values maximally by 2551% to 9415% as shown in Table
9. Comparing METIS and spectral, we see in Figure 3 and Table 8 slightly lower final normalized association
values by Algorithm 1 using METIS compared to using spectral initialization. We believe this is because
METIS minimizes the cut value instead of the normalized cut value. Thus METIS generates somewhat
inferior initialization to spectral. As future work, we plan to install the weighted kernel k-means objective
function into a multi-level framework like METIS, which will hopefully produce as strong (if not stronger)
initialization results for all graph partitioning objectives. For both initialization methods, Algorithm 1 also
generates significant increases in normalized association values after initialization. Taking MEMPLUS as
an example, when spectral initialization is used, the normalized association value is increased by 1.4% for
32 clusters, 8.3% for 64 clusters, and 9.8% for 128 clusters. And when METIS initialization is used, the
normalized association value is increased by 10.5% for 32 clusters, 15.1% for 64 clusters, and 21.9% for 128

16

32 clusters 64 clusters 128 clusters
Initialization min max mean min max mean min max mean
Random 485.71 2551.37 1964.35 1011.5 5191.99 3965.83 2051.28 9415.05 7912.3
Metis .08 10.49 1.55 .27 15.14 2.37 .6 21.93 3.55
Spectral .1 1.41 .42 .17 8.32 1.54 .33 9.83 1.98

Table 9: Min, max and mean percentage increase in normalized association over the 9 graphs listed in Table
5 that is generated by our algorithm using random, metis or spectral initialization

1 2 3 4 5 6 7 8 9
30.22

30.24

30.26

30.28

30.3

30.32

30.34

30.36

Iteration count

N
or

m
al

iz
ed

 a
ss

oc
ia

tio
n

va
lu

e

batch
local search

Figure 4: One run of the final algorithm using spectral initialization on graph FE 4ELT2; 32 clusters

clusters. This underlines the value of using weighted kernel k -means to improve graph partitioning results
even when a sophisticated algorithm, such as spectral graph partitioning, is used.

The effect of local search is illustrated in Figure 4, where a local search chain of length 20 is represented
as one iteration step. The plot shows that the local search steps help to keep increasing the normalized
association value when the batch algorithm gets stuck at local optima.

6.3 Image segmentation

Normalized cuts are often used for image segmentation [11], though generally eigenvectors of a large affinity
matrix must be computed. This may be quite computationally expensive, especially if many eigenvectors
are needed. In addition, Lanczos type algorithms can sometimes fail to converge in a pre-specified number
of iterations (this occurred in some of our MATLAB runs on the image data set). However, using Algorithm
1, we can minimize normalized cuts without computing eigenvectors at all. Figure 5 shows the segmentation
of a sample image done by Algorithm 1, where three clusters are computed. Some preprocessing was done
on the image using code obtained from http://www.cs.berkeley.edu/~stellayu/code.html.

7 Related Work

Our work has been largely inspired by recent results on spectral clustering and relaxation methods presented
in [13, 11, 15, 18]. In [18], the authors show that the traditional unweighted k -means objective function
with squared Euclidean distances can be recast as a trace maximization problem of the Gram matrix for the
original data. This leads to a natural spectral relaxation of k -means, where the top k eigenvectors of the
Gram matrix are used. Using these eigenvectors, a discrete clustering solution is obtained by either clustering
the data vectors in the reduced-dimensional space or by a postprocessing method based on QR-factorization.

17

Figure 5: Segmentation of image. The leftmost plot is the original image and each of the 3 plots to the right
of it is a component (cluster) — body, feet and tail.

Our results generalize this work to the case when kernels are used for non-linear separators, plus we treat
the weighted version of kernel k-means which is a powerful extension that allows us to encompass various
spectral clustering objectives such as minimizing the normalized cut.

In [15], the authors hint at a way to run an iterative algorithm for normalized cuts, though their algorithm
considers the factorization of a semi-definite matrix K such that K = GGT . This would lead to a k -means
like formulation, though the factorization could take time O(n3), which would be much slower than our
approach; neither [15] nor [11] consider kernel k -means. Our methods, which stem from kernel k-means, do
not need the expensive O(n3) factorization of the kernel matrix.

The notion of using a kernel to enhance the k -means objective function was first described in [1]. This
paper also explored other uses of kernels, most importantly in nonlinear component analysis. Kernel-based
learning methods have appeared in a number of other areas in the last few years, especially in the context
of support vector machines [8].

Some research has been done on reformulating the kernel k-means objective function. In [19], the objective
function was recast as a trace maximization, though their work differs from ours in that their proposed
clustering solution did not use any spectral analysis. Instead, they developed an EM-style algorithm to solve
the kernel k -means problem.

A recent paper [20] discusses the issue of enforcing positive definiteness for clustering. The focus in [20] is
on embedding points formed from a dissimilarity matrix into Euclidean space, which is equivalent to forming
a positive definite similarity matrix from the data. Their work does not touch upon the equivalence of various
clustering objectives.

Our earlier paper [9] introduced the notion of weighted kernel k -means and showed how the normalized
cut objective is a special case. This paper substantially extends the analysis of the earlier paper by discussing
a number of additional objectives, such as ratio cut and ratio association, and the issue of enforcing positive
definiteness to handle arbitrary graph affinity matrices. We also provide experimental results on large graphs
and image segmentation.

8 Conclusion

Until recently, kernel k -means has not received a significant amount of attention among researchers. How-
ever, by introducing a more general weighted kernel k -means objective function, we have shown how several
important graph partitioning objectives follow as special cases. In particular, we considered ratio association,
ratio cut, the Kernighan-Lin objective, and normalized cut. We generalized these problems to weighted asso-
ciation and weighted cut objectives, and showed that weighted cut can be expressed as weighted association,
and weighted association can be expressed as weighted kernel k -means.

This result has several important consequences. First, as spectral methods have received a great deal of
attention in the past few years, we may employ many of the spectral techniques that have been developed
to optimize the weighted kernel k -means objective. Secondly, we can use the weighted kernel k -means
algorithm to aid in optimizing a number of graph partitioning objectives. Thirdly, the two approaches may
be combined, resulting in a very powerful clustering algorithm.

18

Moreover, we have discussed the issue of enforcing positive definiteness. As a result of our analysis, we
have shown how cluster initialization using a negative σ shift encourages points to move around during the
clustering algorithm, and sometimes gives results comparable to spectral initialization. We also showed how
each of the graph partitioning objectives can be written in a way that weighted kernel k -means is guaranteed
to monotonically improve the objective function at every iteration.

In the future, we would like to develop a more efficient method for locally optimizing the kernel k -means
objective. In particular, we may be able to use ideas from other graph partitioning algorithms, such as
METIS, to speed up weighted kernel k -means when using large, sparse graphs. We showed how initialization
using METIS works nearly as well as spectral initialization. A more general graph partitioning algorithm
that works like METIS for the weighted kernel k -means objective function would prove to be extremely
useful in any domain that uses graph partitioning.

Finally, we presented experimental results on a number of data sets. We showed how image segmentation,
which is generally performed by normalized cuts using spectral methods, may be done without computing
eigenvectors. We showed that for large, sparse graphs, partitioning the graph can be done comparably with
or without spectral methods. We have provided a solid theoretical framework for unifying two methods of
clustering, and we believe that this will lead to significant improvements in the field of clustering.

References

[1] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel eigenvalue prob-
lem,” Neural Computation, vol. 10, pp. 1299–1319, 1998.

[2] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings

of the Fifth Berkeley Symposium on Math., Stat. and Prob., 1967, pp. 281–296.

[3] W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning of graphs,” IBM J. Res. Devel-

opment, vol. 17, pp. 422–425, 1973.

[4] K. M. Hall, “An r-dimensional quadratic placement algorithm,” Management Science, vol. 11, no. 3,
pp. 219–229, 1970.

[5] P. Chan, M. Schlag, and J. Zien, “Spectral k -way ratio cut partitioning,” IEEE Trans. CAD-Integrated

Circuits and Systems, vol. 13, pp. 1088–1096, 1994.

[6] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 22, no. 8, pp. 888–905, August 2000.

[7] R. Zhang and A. Rudnicky, “A large scale clustering scheme for kernel k -means,” in ICPR02, 2002, pp.
289–292.

[8] N. Cristianini and J. Shawe-Taylor, Introduction to Support Vector Machines: And Other Kernel-Based

Learning Methods. Cambridge, U.K.: Cambridge University Press, 2000.

[9] I. Dhillon, Y. Guan, and B. Kulis, “Kernel k -means, spectral clustering and normalized cuts,” in Proc.

10th ACM KDD Conference, 2004.

[10] B. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” The Bell System

Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

[11] S. X. Yu and J. Shi, “Multiclass spectral clustering,” in International Conference on Computer Vision,
2003.

[12] G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins University Press, 1989.

[13] A. Y. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” in Proc. of

NIPS-14, 2001.

[14] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. John Wiley & Sons, 2000.

19

[15] F. Bach and M. Jordan, “Learning spectral clustering,” in Proc. of NIPS-17. MIT Press, 2004.

[16] I. S. Dhillon, Y. Guan, and J. Kogan, “Iterative clustering of high dimensional text data augmented
by local search,” in Proceedings of The 2002 IEEE International Conference on Data Mining, 2002, pp.
131–138.

[17] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,”
SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, 1999.

[18] H. Zha, C. Ding, M. Gu, X. He, and H. Simon, “Spectral relaxation for k -means clustering,” in Neural

Info. Processing Systems, 2001.

[19] M. Girolami, “Mercer kernel based clustering in feature space,” IEEE Transactions on Neural Networks,
vol. 13, no. 4, pp. 669–688, 2002.

[20] V. Roth, J. Laub, M. Kawanabe, and J. Buhmann, “Optimal cluster preserving embedding of non-
metric proximity data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 12, 2003.

20

