Appendices

A Variational inference details

To effectively perform variational inference, we re-write G as a single sum of weighted atoms, using indicator variables $\{d_k\}$ for the rounds in which the atoms occur, similar to [Paisley et al., 2010]. We re-state our construction of the gamma CRM that we use for the inference algorithms:

$$ G = \sum_{k=1}^{\infty} E_k e^{-T_k} \delta_{\omega_k}, \quad (1) $$

where $E_k \overset{iid}{\sim} \text{Exp}(c)$, $T_k \overset{iid}{\sim} \text{Gamma}(d_k, \alpha)$, $\sum_{k=1}^{\infty} \mathbb{1}_{(d_k=r)} \overset{iid}{\sim} \text{Poisson}(\gamma)$, $\omega_k \overset{iid}{\sim} \mathcal{N}(0, \frac{1}{2} H_0)$. Here d_k denotes the round in which atom k appears, and may be defined as $d_k \overset{\Delta}{=} 1 + \sum_{i=1}^{\infty} \mathbb{1}_{\left\{\sum_{j=1}^{i} C_j < k\right\}}$.

Conversely, given the round indicators $d = \{d_k\}$, we can recover the round-specific atom counts as $C_i = \sum_{k=1}^{\infty} \mathbb{1}(d_k = i)$.

We place gamma priors on α, γ and $c : \alpha \sim \text{Gamma}(a_1, a_2), \gamma \sim \text{Gamma}(b_1, b_2), c \sim \text{Gamma}(c_1, c_2)$. Denoting the data, the latent prior variables and the model hyperparameters by D, Π and Λ respectively, the full likelihood may be written as $P(D, \Pi|\Lambda) =$

$$ P(D, \Pi_{\neg G}|\Pi_G, \Lambda) \cdot P(\alpha) \cdot P(\gamma) \cdot P(c) \cdot P(d|\gamma) \cdot \prod_{k=1}^{K} P(E_k|c) \cdot P(T_k|d_k, \alpha) \cdot \prod_{n=1}^{N} P(z_{nk}|E_k, T_k), $$

with $\Pi_{\neg G}$ denoting the set of the latent variables excluding those from the Poisson-Gamma prior. The distribution of d is given by $P(d|\gamma) =$

$$ \prod_{r=1}^{\infty} \gamma \sum_{k=1}^{\infty} \mathbb{1}_{(d_k=r)} \exp \left\{-\gamma \sum_{r'=r}^{\infty} \sum_{k=1}^{\infty} \mathbb{1}_{(d_k=r')} > 0 \right\}. $$

See [Paisley et al., 2011] for discussions on how to approximate some of these factors in the variational algorithm.

A.1 The Variational Prior Distribution

Mean-field variational inference involves minimizing the KL divergence between the model posterior, and a suitably constructed variational distribution which is used as a more tractable alternative to the actual posterior distribution. To that end, we propose a fully-factorized variational distribution on the Poisson-Gamma prior as follows:

$$ Q = q(\alpha) \cdot q(\gamma) \cdot q(c) \cdot \prod_{k=1}^{K} q(E_k) \cdot q(T_k) \cdot q(d_k) \cdot \prod_{n=1}^{N} q(z_{nk}), $$

where $q(E_k) \sim \text{Gamma}(\xi_k, \epsilon_k)$, $q(T_k) \sim \text{Gamma}(u_k, v_k)$, $q(\alpha) \sim \text{Gamma}(\kappa_1, \kappa_2)$, $q(\gamma) \sim \text{Gamma}(\tau_1, \tau_2)$, $q(c) \sim \text{Gamma}(\rho_1, \rho_2)$, $q(z_{nk}) \sim \text{Poisson}(\lambda_{nk})$, $q(d_k) \sim \text{Mult}(\varphi_k)$.

The evidence lower bound (ELBO) may therefore be written as $\mathcal{L} = \mathbb{E}_Q \log P(D, \Pi|\Lambda) - \mathbb{E}_Q \log Q$, with the relevant distributions described above.

A.2 Variational parameter updates

We first re-state the closed form updates for the variational distributions on the prior variables. The updates for the hy-
per parameters in \(q(E_k), q(\alpha), q(\gamma), q(\rho) \) and \(q(\beta) \) are as follows:

\[
\zeta_k = \sum_{n=1}^{N} E_Q(z_{nk}) + 1, \quad \epsilon_k = E(c) + N \times E_Q \left[e^{-T_k}\right],
\]

\[
k_1 = \sum_{k=1}^{N} r \varphi_k(r) + a_1, k_2 = \sum_{k=1}^{N} E_Q(T_k) + a_2,
\]

\[
\rho_1 = c_1 + K, \quad \rho_2 = \sum_{k=1}^{K} E_Q(E_k) + c_2,
\]

\[
\tau_1 = b_1 + K, \quad \tau_2 = \sum_{r \geq 1} \left\{ 1 - \prod_{k=1}^{K} \varphi_k(r) \right\} + b_2.
\]

The updates for the multinomial probabilities in \(q(d_k) \) are given by:

\[
\varphi_k(r) \propto \exp \left\{ r E_Q(\log \alpha) - \log \Gamma(r) + (r-1) E_Q(\log T_k) - \zeta \cdot \sum_{i \neq k} \varphi_i(r) - E_Q(\gamma) \sum_{j=2}^{r} \prod_{k=1}^{K} \varphi_k(r) \right\}.
\]

Next we describe the gradient ascent updates on \(q(T_k) \) and the updates on \(q(\Pi-G) \) and \(q(z_{nk}) \).

The gradients for the two variational parameters in \(q(T_k) \) are:

\[
\frac{\partial L}{\partial u_k} = \sum_{r \geq 1} (r-1) \varphi_k(r) \psi'(u_k) - \frac{E_Q(\alpha)}{u_k}
\]

\[- \sum_{n=1}^{N} E_Q(E_k) \left(\frac{u_k}{u_k + 1} \right) \cdot \log \left(\frac{u_k}{u_k + 1} \right) - \sum_{n=1}^{N} E_Q(z_{nk}) \frac{1}{u_k} - (u_k - 1) \psi'(u_k) - 1
\]

\[
\frac{\partial L}{\partial v_k} = - \sum_{r \geq 1} (r-1) \varphi_k(r) \frac{1}{u_k} + E_Q(\alpha) \frac{u_k}{(u_k)^2}
\]

\[- \sum_{n=1}^{N} E_Q(E_k) u_k \frac{u_k^{-1}}{(u_k + 1)^{u_k+1}}
\]

\[+ \sum_{n=1}^{N} E_Q(z_{nk}) \frac{u_k}{(u_k)^2} - \frac{1}{u_k}.
\]

This setup does not immediately lend itself to closed form updates for the \(b \)-s, so we resort to gradient ascent. The gradient of the ELBO with respect to each variational hyperparameter is

\[
\frac{\partial L}{\partial b_{vk}} = - \sum_{n=1}^{N} b_{vk} \cdot \frac{1}{(\sum_{n=1}^{N} b_{vk})^2} + \psi'(b_{vk}) \cdot (\beta_v - b_{vk} + \sum_{n=1}^{N} d_{vn} + \psi(\sum_{v} b_{vk}) \times \left(\sum_{v} b_{vk} - V - \beta_v - \sum_{n=1}^{N} d_{vn} + 1 \right).
\]

In practice however we found a closed-form update facilitated by a simple lower bound on the ELBO to converge faster. We describe the update here. First note that the part of the ELBO relevant to a potential closed form variational update of \(\psi_{vk} \) can be written as

\[
L = - \psi_{vk} : \sum_{n} E_Q(z_{nk}) + \sum_{n} d_{vn} \cdot \log \phi_{vk} + \cdots,
\]

which can then be lower bounded as

\[
L \geq \log \phi_{vk} \cdot \left(- \sum_{n} E_Q(z_{nk}) + \sum_{n} d_{vn} \right) + \cdots.
\]

This allows us to analytically update \(b_{vk} \) as \(b_{vk} = - \sum_{n} E_Q(z_{nk}) + \sum_{n} d_{vn} + \beta_v \). This frees us from having to choose appropriate corpus-specific initializations and learning rates for the \(\psi \)s.

A similar lower bound on the ELBO allows us to update the variational parameters of \(q(z_{nk}) \) as \(\lambda_{nk} = -1 - \sum_{n} d_{vn} + \sum_{n} E_Q(\log E_k) + E_Q(T_k) \).

B Variational inference using denormalized DP construction

We describe our algorithm derived from the simpler construction of the Gamma process by multiplying the stick-breaking construction of the Dirichlet process by a Gamma random variable. The construction can be written as:

\[
G = G_0 \sum_{i=1}^{\infty} V_i \prod_{j=1}^{i-1} (1 - V_j) \delta_{\omega_i},
\]

where \(G_0 \sim \text{Gamma}(\alpha, c), \quad V_i \sim \text{Beta}(1, \alpha), \quad \omega_i \sim H_0. \)

We use an equivalent form of the construction that is similar to the one used above:

\[
G = G_0 \sum_{k=1}^{\infty} V_k e^{-T_k} \delta_{\omega_k},
\]
where \(G_0 \sim \text{Gamma}(\alpha, c) \), \(V_k \overset{iid}{\sim} \text{Beta}(1, \alpha) \), \(T_k \overset{iid}{\sim} \text{Gamma}(k-1, \alpha) \), \(\omega_i \overset{iid}{\sim} H_0 \).

As before, we place gamma priors on \(\Gamma_1 = L_k = 2 \) and \(\nu = \partial(1 - \nu_k) \).

Our variational distribution for this prior is as follows:

\[
Q = q(G_0) \cdot q(\alpha) \cdot q(c) \cdot \prod_{k=1}^K q(V_k) \cdot q(T_k) \cdot \prod_{n=1}^N q(z_{nk}),
\]

where \(q(G_0) \sim \text{Gamma}(g_1, g_2) \), \(q(V_k) \sim \text{Beta}(\nu_{k1}, \nu_{k2}) \), \(q(T_k) \sim \text{Gamma}(t_{k1}, t_{k2}) \), \(q(\alpha) \sim \text{Gamma}(\alpha_1, \alpha_2) \), \(q(c) \sim \text{Gamma}(\rho_1, \rho_2) \), \(q(z_{nk}) \sim \text{Poisson}(\lambda_{nk}) \).

The closed form updates for the variational hyperparameters for \(\alpha, G_0, \) and \(c \) are as follows:

\[
\kappa_1 = a_1, \quad \kappa_2 = a_2 - \mathbb{E}_Q(\log G_0) - \sum_k \mathbb{E}_Q(1 - V_k) + \sum_k \mathbb{E}_Q(T_k),
\]

\[
g_1 = \alpha + \sum_{n=1}^N \sum_k \mathbb{E}_Q(z_{nk}), \quad g_2 = N \cdot \sum_k \mathbb{E}_Q(V_k e^{-T_k}), \quad \rho_1 = c_1, \quad \rho_2 = c_2 + \mathbb{E}_Q(G_0).
\]

The updates for \(q(V_k) \) and \(q(T_k) \) are not closed form, necessitating gradient ascent steps. The gradients for the variational parameters in \(q(V_k) \) are:

\[
\frac{\partial L}{\partial \nu_{k1}} = \psi'(\nu_{k1} + \nu_{k2}) \left[\nu_{k1} + \nu_{k2} - \alpha - \sum_{n=1}^N \mathbb{E}_Q(z_{nk}) - 1 \right] + \psi'(\nu_{k1}) \cdot \left[\sum_{n=1}^N \mathbb{E}_Q(z_{nk}) - \nu_{k1} + 1 \right] - N \cdot \mathbb{E}_Q(G_0 e^{-T_k}) \frac{\nu_{k2}}{\nu_{k1} + \nu_{k2}}
\]

\[
\frac{\partial L}{\partial \nu_{k2}} = \psi'(\nu_{k1} + \nu_{k2}) \left[\nu_{k1} + \nu_{k2} - \alpha - \sum_{n=1}^N \mathbb{E}_Q(z_{nk}) - 1 \right] - N \cdot \mathbb{E}_Q(G_0 e^{-T_k}) \frac{\nu_{k1}}{\nu_{k1} + \nu_{k2}} + \psi'(\nu_{k2}) \cdot [\alpha - \nu_{k2}].
\]

The gradients for the variational parameters in \(q(T_k) \) are:

\[
\frac{\partial L}{\partial t_{k1}} = 1 + \psi'(t_{k1}) \cdot (k - t_{k1} - 1) - \log t_{k2} - \frac{1}{t_{k2}} \left[\alpha + \sum_{n=1}^N \mathbb{E}_Q(z_{nk}) \right] - N \cdot \mathbb{E}_Q(G_0 V_k) \frac{\partial}{\partial t_{k2}} \left(\frac{t_{k2}}{t_{k2} + 1} \right)^{t_{k1}}
\]

\[
\frac{\partial L}{\partial t_{k2}} = \frac{t_{k1}}{t_{k2}} \left[\alpha + \sum_{n=1}^N \mathbb{E}_Q(z_{nk}) - 1 \right] t_{k1} - N \cdot \mathbb{E}_Q(G_0 V_k) \cdot \frac{\partial}{\partial t_{k2}} \left(\frac{t_{k2}}{t_{k2} + 1} \right)^{t_{k1}}
\]

C Markov chain Monte Carlo sampling details

We re-write the construction of the Poisson-Gamma prior:

\[
G = \sum_{k=1}^{\infty} E_k e^{-T_k} \delta_{\omega_k},
\]

\[
E_k \overset{iid}{\sim} \text{Exp}(c), \quad T_k \overset{iid}{\sim} \text{Gamma}(d_k, \alpha), \quad \sum_{k=1}^{\infty} \mathbb{I}(d_k = r) \overset{iid}{\sim} \text{Poisson}(\gamma), \quad \omega_k \overset{iid}{\sim} \frac{1}{2} H_0.
\]

We put improper priors on \(\alpha \) and \(c \), and a noninformative Gamma prior on \(\gamma \). The indicator counts are given by \(Z_{nk} \sim \text{Pois}(g_k) \), where \(g_k = E_k e^{-T_k} \).

To avoid sampling the atom weights \(E_n \) and \(T_k \), we integrate them out using Monte Carlo techniques in the sampling steps for the prior.

C.1 Sampling the round indicators

The conditional posterior for the round indicators \(d = \{d_k\}_{k=1}^K \) can be written as

\[
p(d_k = i\{|d_l\}_{l=1}^{k-1}, \{Z_{nk}\}_{n=1}^N, \alpha, c, \gamma) \propto p(\{Z_{nk}\}_{n=1}^N | d_k = i, \alpha, c) p(d_k = i | \{d_l\}_{l=1}^{k-1}).
\]

For the first factor, we collapse out the stick-breaking weights and approximate the resulting integral using Monte-Carlo techniques as follows:

\[
p(\{Z_{nk}\}_{n=1}^N | d_k = i, \alpha, c) = \int_{[0, \infty]} \prod_{n=1}^N \text{Pois}(Z_{nk} | g_k) dG \approx \frac{1}{S} \sum_{s=1}^S \prod_{n=1}^N \text{Pois}(Z_{nk} | g_k^{(s)}),
\]

where \(g_k^{(s)} = E_k^{(s)} e^{-T_k^{(s)}} \overset{d}{=} V_k^{(s)} d_k \prod_{l=1}^{d_k} (1 - V_{kl}^{(s)}) \).

Here \(S \) is the number of simulated samples from the integral over the stick-breaking weights. We take \(S = 1000 \) in our experiments.

The second factor is the same as \cite{paisley2010}:\(p(d_k = d | \gamma, \{d_l\}_{l=1}^{k-1}) = \)

\[
0 \quad \text{if } d < d_{k-1}
\]

\[
\frac{1 - \sum_{l=1}^{d_{k-1}} \text{Pois}(t_{k,l})}{1 - \sum_{l=1}^{d_{k-1}} \text{Pois}(t_{k,l})} \left(1 - \text{Pois}(0 | \gamma) \right) \text{Pois}(0 | \gamma)^{k-1} \quad \text{if } d = d_{k-1}
\]

Here \(D_k = \sum_{j=1}^k \mathbb{I}(d_j = d_k) \).

Normalizing the product of these two factors over all \(i \) is infeasible, so we evaluate this product for increasing \(i \) till it drops below \(10^{-2} \), and normalize over the gathered values.
C.2 Sampling the factor variables

Here we consider the Poisson factor modeling scenario that we use to model vocabulary-document count matrices. Recall that a $V \times N$ count matrix D is modeled as $D = \text{Poi}(\Phi Z)$, where the $V \times K$ matrix Φ models the factor loadings, and the $K \times N$ matrix Z models the actual factor counts in the documents. We put the Poisson-Gamma prior on Z and symmetric Dirichlet(β_1, \ldots, β_V) priors on the columns of Φ. The sampling steps for Φ and Z are described next.

C.2.1 Sampling Φ

First note that the elements of the count matrix are modeled as $d_{vn} = \text{Poi} \left(\sum_{k=1}^{K} \phi_{vk} z_{kn} \right)$, which can be equivalently written as $d_{vn} = \sum_{k=1}^{K} d_{vkn} = \text{Poi}(\sum_{k=1}^{K} \phi_{vk} z_{kn})$. Standard manipulations then allow us to sample the d_{vkn}’s from $\text{Mult}(d_{vkn}; p_{v1n}, \ldots, p_{vKn})$ where $p_{vkn} = \phi_{vk} z_{kn} / \sum_{k=1}^{K} \phi_{vk} z_{kn}$.

Now we have $\phi_k \sim \text{Dirichlet}(\beta_1, \ldots, \beta_V)$. Using standard relationships between Poisson and multinomial distributions, we can derive the posterior distribution of the ϕ_k’s as $\text{Dirichlet}(\beta_1 + d_{1k}, \ldots, \beta_V + d_{Vk})$, where $d_{vk} = \sum_{n=1}^{N} d_{vkn}$.

C.2.2 Sampling Z

In our algorithm we sample each z_{nk} conditioned on all the other variables in the model; therefore the conditional posterior distribution can be written as

$$p(z_{nk}|D, \Phi, Z_{n,-k}, d, \alpha, c, \gamma)$$

$$= p(D|Z_{n}, \Phi)p(z_{nk}|d, \alpha, c, Z_{n,-k})$$

$$= \prod_{v=1}^{V} \text{Poi} \left(d_{vn} | \sum_{k=1}^{K} \phi_{vk} z_{kn} \right) \frac{p(Z_{n}|d, \alpha, c)}{p(Z_{n,-k}|d, \alpha, c)}.$$

The distributions in both the numerator and denominator of the second factor can be sampled from using the Monte Carlo techniques described above, by integrating out the stick-breaking weights.

C.3 Sampling hyperparameters

As mentioned above, we put a noninformative Gamma prior on γ and improper (1) priors on α and c. The posterior sampling steps are described below:

C.3.1 Sampling γ

Given the round indicators $d = \{d_k\}$, we can recover the round-specific atom counts as described above. Then the conjugacy between the Gamma prior on γ and the Poisson distribution of C_i gives us a closed form posterior distribution for γ: $p(\gamma|d, Z, \alpha, c) = \text{Gamma}(\gamma|a + \sum_{i=1}^{K} C_i, b + d_K)$.

C.3.2 Sampling α

The conditional posterior distribution of α may be written as:

$$p(\alpha|Z, d, c) \propto p(\alpha) \prod_{n=1}^{N} \prod_{k=1}^{K} p(Z|d, \alpha, c).$$

We calculate the posterior distribution of Z using Monte Carlo techniques as described above. Then we discretize the search space for α around its current values as $(\alpha_{cur} + t\Delta\alpha)_{t=L}$, where the lower and upper bounds L and U are chosen so that the unnormalized posterior falls below 10^{-2}. The search space is also clipped below at 0. α is then drawn from a multinomial distribution on the search values after normalization.

C.3.3 Sampling c

We sample c in exactly the same way as α. We first write the conditional posterior as

$$p(c|Z, d, \alpha) \propto p(c) \prod_{n=1}^{N} \prod_{k=1}^{K} p(Z|d, \alpha, c).$$

The search space ($c > 0$) is then discretized using appropriate upper and lower bounds as above, and Z is sampled using Monte Carlo techniques. c is then drawn from a multinomial distribution on the search values after normalization.

References
