
Fast Similarity Search for Learned Metrics
Brian Kulis, Member, IEEE, Prateek Jain, Student Member, IEEE, and

Kristen Grauman, Member, IEEE

Abstract—We introduce a method that enables scalable similarity search for learned metrics. Given pairwise similarity and

dissimilarity constraints between some examples, we learn a Mahalanobis distance function that captures the examples’ underlying

relationships well. To allow sublinear time similarity search under the learned metric, we show how to encode the learned metric

parameterization into randomized locality-sensitive hash functions. We further formulate an indirect solution that enables metric

learning and hashing for vector spaces whose high dimensionality makes it infeasible to learn an explicit transformation over the

feature dimensions. We demonstrate the approach applied to a variety of image data sets, as well as a systems data set. The learned

metrics improve accuracy relative to commonly used metric baselines, while our hashing construction enables efficient indexing with

learned distances and very large databases.

Index Terms—Metric learning, similarity search, locality-sensitive hashing, LogDet divergence, kernel learning, image search.

Ç

1 INTRODUCTION

AS the world’s store of digital images and documents
continues to grow exponentially, many interesting

problems demand fast techniques capable of accurately
searching very large databases. This is particularly true as
novel data-rich approaches to computer vision begin to
emerge. For instance, local feature-based recognition meth-
ods require searching huge databases of patch descriptors
[1], as do new methods for computing 3D models from
multiuser photo databases [2]. Similarly, image or video-
based data mining [3], [4] and example-based approaches to
pose estimation [5], [6] seek to leverage extremely large
image collections, while nearest neighbor classifiers are
frequently employed for recognition and shape matching
[7], [8]. For most such tasks, the quality of the results relies
heavily on the chosen image representation and the
distance metric used to compare examples.

Unfortunately, preferred representations tend to be high
dimensional [1], [4], and often the best distance metric is one
specialized (or learned) for the task at hand [8], [7], [9],
rather than, say, a generic euclidean norm or Gaussian
kernel. Neither factor bodes well for large-scale search:
known data structures for efficient exact search are
ineffective for high-dimensional spaces, while existing
methods for approximate sublinear time search are defined
only for certain standard metrics. Thus, there is a tension
when choosing a representation and metric, where one must
find a fine balance between the suitability for the problem

and the convenience of the computation. We are interested
in reducing this tension; to that end, in this work, we
develop a general algorithm that enables fast approximate
search for a family of learned metrics and kernel functions.

The success of any distance-based indexing, clustering,
or classification scheme depends critically on the quality of
the chosen distance metric and the extent to which it
accurately reflects the data’s true underlying relationships,
e.g., the category labels or other hidden parameters. A good
metric would report small distances for examples that are
similar in the parameter space of interest (or that share a
class label), and large distances for examples that are
unrelated. General-purpose measures, such as Lp norms,
are not necessarily well-suited for all learning problems
with a given data representation.

Recent advances in metric learning make it possible to
learn distance (or kernel) functions that are more effective
for a given problem, provided some partially labeled data
or constraints are available [10], [11], [12], [13], [14], [15], [8].
By taking advantage of the prior information, these
techniques offer improved accuracy when indexing or
classifying examples. However, thus far, they have limited
applicability to very large data sets since specialized
learned distance functions preclude the direct use of known
efficient search techniques. Data structures for efficient
exact search are known to be ineffective for high-dimen-
sional spaces and can (depending on the data distribution)
degenerate to brute-force search [16], [17]; approximate
search methods can guarantee sublinear time performance,
but are defined only for certain generic metrics. As such,
searching for similar examples according to a learned
metric currently requires an exhaustive (linear) scan of all
previously seen examples, in the worst case. This is a
limiting factor that, thus far, deters the use of metric
learning with very large databases.

In this work, we introduce a method for fast approximate
similarity search with learned Mahalanobis metrics. We
formulate randomized hash functions that incorporate side
information from partially labeled data or paired constraints
so that examples may be efficiently indexed according to the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009 2143

. B. Kulis is with the Electrical Engineering and Computer Science
Department and the International Computer Science Institute, University
of California at Berkeley, 387 Soda Hall, Berkeley, CA 94720.
E-mail: kulis@eecs.berkeley.edu.

. P. Jain and K. Grauman are with the Department of Computer Sciences,
University of Texas at Austin, 1 University Station C0500, Austin, TX
78712. E-mail: {pjain, grauman}@cs.utexas.edu.

Manuscript received 2 Dec. 2008; revised 22 Apr. 2009; accepted 5 July 2009;
published online 5 Aug. 2009.
Recommended for acceptance by K. Boyer, M. Shah, and T. Syeda-Mahmood.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMISI-2008-12-0827.
Digital Object Identifier no. 10.1109/TPAMI.2009.151.

0162-8828/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

learned metric without resorting to a naive exhaustive scan of
all items. We present a straightforward solution for the case of
relatively low-dimensional input vector spaces, and further
derive a solution to accommodate very high-dimensional
data for which explicit input space computations are
infeasible. The former contribution makes fast indexing
accessible for numerous existing metric learning methods
(e.g., [10], [11], [14], [13], [15]), while the latter is of particular
interest for commonly used image and text representations,
such as bags of words, multidimensional multiresolution
histograms, and other high-dimensional features.

We demonstrate the generality of our approach by
applying it to four distinct large-scale search problems:
indexing bug reports for a software support system,
exemplar-based visual recognition, human body pose
estimation, and local image feature indexing. Our method
allows rapid and accurate retrieval and improves over
relevant state-of-the-art techniques.

2 RELATED WORK

Recent work has yielded various approaches to metric
learning, including several techniques to learn a combina-
tion of existing kernels [19], [20], as well as methods to
learn a Mahalanobis metric [10], [13], [21], [11], [15] and
methods to learn example-specific local distance functions
[8]. In particular, Xing et al. learn a Mahalanobis metric for
k-means clustering by using semidefinite programming to
minimize the sum of squared distances between similarly
labeled examples, while requiring a certain lower bound on
the distances between examples with different labels [10].
In related techniques, Globerson and Roweis [14] constrain
within-class distances to be zero and maximize between-
class distances, Weinberger et al. formulate the problem in
a large-margin k-nearest-neighbors (k-NN) setting [13],
while Goldberger et al. maximize a stochastic variant of
the leave-one-out k-NN score on the training set [21]. In
addition to using labeled data, research has shown how
metric learning can proceed with weaker supervisory
information, such as equivalence constraints or relative
constraints. For example, equivalence constraints are
exploited in the Relevant Component Analysis method of
Bar-Hillel et al. [11]; the Dimensionality Reduction by
Learning an Invariant Mapping (DrLIM) method developed
by Hadsell et al. [22] learns a global nonlinear mapping of
the input data; the Support Vector Machine-based approach
of Schultz and Joachims [23] incorporates relative con-
straints over triples of examples and is extended by Frome
et al. to learn example-specific local distance functions [24].
Davis et al. develop an information-theoretic approach that
accommodates any linear constraint on pairs of examples
and provide an efficient optimization solution that forgoes
expensive eigenvalue decomposition [15].

To compute the optimal weighted combination of a
collection of kernels or kernel matrices given some training
labels, Lanckriet et al. propose a semidefinite programming
solution [19], while Crammer et al. [25] and Hertz et al. [26]
develop boosting-based approaches. Multiple kernel learn-
ing has also received attention in the vision community
recently, with work showing the value of combining multiple
types of image features with appropriate weights, whether
through kernel alignment [27], [20] or cross validation [28].

Embedding functions can be useful both to capture (as
closely as possible) a desired set of provided distances
between points, as well as to provide an efficient approx-
imation for a known but computationally expensive
distance function of interest [29], [9]. Multidimensional
scaling [30], Locally Linear Embeddings [31], and IsoMap
[32] provide ways to capture known distances in a low-
dimensional space, and provably low-distortion geometric
embeddings have also been explored (e.g., [33]). The
BoostMap approach of Athitsos et al. learns efficient
euclidean-space embeddings that preserve proximity as
dictated by useful but expensive distance measures [29].
More recently, Torralba et al. have shown that several
learning methods can produce effective low-dimensional
embedding functions for image comparisons using the
global Gist image feature [34].

In order to efficiently index multidimensional data, data
structures based on spatial partitioning and recursive
hyperplane decomposition have been developed, e.g.,
k� d-trees [16] and metric trees [17]. Due to the particular
importance of indexing local patch features, several tree-
based strategies have also been proposed [35], [36] in the
vision community. Some such data structures support the
use of arbitrary metrics. However, while their expected
query-time requirement may be logarithmic in the database
size, selecting useful partitions can be expensive and
requires good heuristics; worse, in high-dimensional
spaces, all exact search methods are known to provide
little improvement over a naive linear scan [37].

As such, researchers have considered the problem of
approximate similarity search, where a user is afforded
explicit trade-offs between the guaranteed accuracy versus
speed of a search. Several randomized approximate search
algorithms have been developed that allow high-dimen-
sional data to be searched in time sublinear in the size of the
database. Notably, Indyk and Motwani [37] and Charikar
[38] proposed locality-sensitive hashing (LSH) techniques to
index examples in Hamming space in sublinear time, and
Datar et al. extended LSH for Lp norms in [39].

Data-dependent variants of LSH have been proposed:
Georgescu et al. select partitions based on where data points
are concentrated [40], while Shakhnarovich et al. use
boosting to select feature dimensions that are most
indicative of similarity in the parameter space [5]. This
tunes the hash functions according to the estimation
problem of interest; however, indexed examples are sorted
according to the input space (nonlearned) distance. Embed-
ding functions that map a specialized distance into a
generic space (e.g., euclidean) have also been developed to
exploit fast approximate search methods for particular
metrics of interest, such as a bijective match distance or
partial match kernel [41], [42]; however, such embeddings
cannot accommodate constrained distances and are not
instances of learned metrics. Muja and Lowe [43] empiri-
cally compare several of the above discussed methods for
fast approximate nearest neighbor search.

We address the problem of sublinear time approximate
similarity search for a class of learned metrics. While
randomized algorithms such as LSH have been employed
extensively to mitigate the time complexity of identifying

2144 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009

similar examples, particularly in vision [44], their use has
been restricted to generic measures for which the appro-
priate hash functions are already defined; that is, direct
application to learned metrics was not possible. We instead
devise a method that allows knowledge attained from
partially labeled data or paired constraints to be incorpo-
rated into the hash functions (see Fig. 1). Our algorithm is
theoretically sound: There is provably no additional loss in
accuracy relative to the learned metric beyond the quantifi-
able loss induced by the approximate search technique. In
addition, the proposed method stands to benefit several
existing methods for metric learning, since much research
has been devoted to the class of Mahalanobis metrics in
particular. This paper expands upon our previous con-
ference publication [18].

3 APPROACH

The main idea of our approach is to learn a parameterization
of a Mahalanobis metric based on provided labels or paired
constraints for some training examples, while simulta-
neously encoding the learned information into randomized
hash functions. These functions will guarantee that the more
similar inputs are under the learned metric, the more likely
they are to collide in a hash table. After constructing hash
tables containing all of the database examples, those
examples similar to a new instance are found in sublinear

time in the size of the database by evaluating the learned

metric between the new example and any example with

which it shares a hash bucket.

3.1 Parameterized Mahalanobis Metrics

Given n points fxx1; . . . ; xxng, with all xxi 2 <d, we wish to

compute a positive-definite (p.d.) d� d matrix A to

parameterize the squared Mahalanobis distance:

dAðxxi; xxjÞ ¼ ðxxi � xxjÞTAðxxi � xxjÞ; ð1Þ

for all i; j ¼ 1; . . . ; n. Note that a generalized inner product

(kernel) measures the pairwise similarity associated with

that distance:

sAðxxi; xxjÞ ¼ xxTi Axxj: ð2Þ

The Mahalanobis distance is often used with A as the

inverse of the sample covariance when data are assumed to

be Gaussian, or with A as the identity matrix if the squared

euclidean distance is suitable. In general, the Mahalanobis

distance may be viewed as measuring the squared

euclidean distance after applying a linear transformation

(if A ¼ GTG, then the Mahalanobis distance is equivalently

ðGxxi �GxxjÞT ðGxxi �GxxjÞ). Given a set of interpoint dis-

tance constraints, one can directly learn a matrix A to yield a

measure that is more accurate for a given classification or

clustering problem. Many methods have been proposed for

KULIS ET AL.: FAST SIMILARITY SEARCH FOR LEARNED METRICS 2145

Fig. 1. (a) Overview of locality-sensitive hashing. A list of k hash functions hr1
; . . . ; hrk is applied to map N database images to a hash table, where

similar items are likely to share a bucket. After hashing a query Q, one must only evaluate the similarity between Q and the database examples with
which it collides to obtain the approximate near-neighbors [37], [38]. (b) When learning a metric, some paired constraints can be obtained for a
portion of the image database, specifying some examples that ought to be treated as similar (straight line) or dissimilar (crossed out line).
(c) Whereas existing randomized LSH functions hash examples similar under the original distance together, (d) our semi-supervised hash functions
incorporate the learned constraints so that examples constrained to be similar—or other pairs like them—will with high probability hash together. The
circular red region in (c) denotes that the existing LSH functions generate a hyperplane uniformly at random to separate images. In contrast, as
indicated by the blue “hourglass” region in (d), our hash functions bias the selection of the random hyperplane to reflect the specified (dis)similarity
constraints. In this example, even though the measured angle between x and y is wide, our semi-supervised hash functions are unlikely to split them
into different buckets since the constraints indicate that they should be treated as similar.

Mahalanobis metric learning [10], [13], [14], [11], [15]; we
consider the information-theoretic metric learning method
of [15] because it is kernelizable and, hence, can efficiently
handle data with high-dimensional feature spaces. Since
below we will derive a new algorithm to systematically
update semi-supervised hash functions in concert with this
metric learner, we next briefly overview the necessary
background and equations from [15].

3.2 Information-Theoretic Metric Learning

Given an initial d� d p.d. matrix A0 specifying prior
knowledge about interpoint distances, the learning task is
posed as an optimization problem that minimizes the
LogDet loss between matrices A and A0, subject to a set of
constraints specifying pairs of examples that are similar or
dissimilar. In semi-supervised multiclass settings, the
constraints are taken directly from the provided labels:
points in the same class are constrained to be similar, and
points in different classes are constrained to be dissimilar.

To compute A, the LogDet loss D‘dðA;A0Þ is minimized
while enforcing the desired constraints:

min
A�0

D‘dðA;A0Þ

s:t: dAðxxi; xxjÞ � u ði; jÞ 2 S;
dAðxxi; xxjÞ � ‘ ði; jÞ 2 D;

ð3Þ

where D‘dðA;A0Þ ¼ trðAA�1
0 Þ � log detðAA�1

0 Þ � d, d is the
dimensionality of the data points, dAðxxi; xxjÞ is the Mahala-
nobis distance between xxi and xxj as defined in (1), S and D
are sets containing pairs of points constrained to be similar
and dissimilar, respectively, and ‘ and u are large and small
values, respectively (and will be defined below).1 The
optimization is “information-theoretic” in that it corre-
sponds to minimizing the relative entropy between the
associated Gaussians whose covariance matrices are para-
meterized according to A and A0.

The LogDet loss is amenable for metric learning in part
because there is a very simple algorithm for optimizing (3),
which involves repeatedly projecting the current solution
onto a single constraint, via the update [15]:

Atþ1 ¼ At þ �tAtðxxit � xxjtÞðxxit � xxjtÞ
TAt;

�t ¼
min �itjt ;

1

dAt
ðxxit ; xxjtÞ

� 1

u

� �
if ðit; jtÞ 2 S;

min �itjt ;
1

l
� 1

dAt
ðxxit ; xxjtÞ

� �
if ðit; jtÞ 2 D;

8>>><
>>>:

�itjt ¼ �itjt � �t; �t ¼
�t

1� �tdAt
ðxxit ; xxjtÞ

;

ð4Þ

where xxit and xxjt are the constrained data points for
iteration t, �itjt is the corresponding dual variable, and �t is
a projection parameter computed by the algorithm. Thus,
we begin at time step 0 with the provided initial A0 as our
Mahalanobis matrix, and at each time step, we choose a
single constraint and project onto that constraint. Under the
assumption that A0 is a full rank matrix and there is a
feasible solution, the algorithm will converge to the optimal
solution A. Note that the cost of a projection is Oðd2Þ and the

projection parameter �t is computed in closed form. See [15]
for further details.

Another advantage of using the LogDet loss for metric
learning, and the primary reason we employ it in this work,
is that one can efficiently kernelize the algorithm. When the
dimensionality of the data is very high, one cannot
explicitly work with A, and so the update in (4) cannot be
performed. However, one may still implicitly update the
Mahalanobis matrix A via updates in kernel space for an
equivalent kernel learning problem in which K ¼ XTAX,
for X ¼ ½xx1; . . . ; xxn�. If K0 is the input kernel matrix for the
data (K0 ¼ XTA0X), then the appropriate update is

Ktþ1 ¼ Kt þ �tKtðeeit � eejtÞðeeit � eejtÞ
TKt; ð5Þ

where the vectors eeit and eejt refer to the itth and jtth standard
basis vectors, respectively, and the projection parameter �t
is the same as in the last equation of (4) (see [15]). This
update is derived by multiplying (4) on the left by XT and
on the right by X. If A0 ¼ I, then the initial kernel matrix is
K0 ¼ XTX; this may be formed using any valid kernel
function, and the result of the algorithm is to learn a
distance metric on top of this input kernel.

For low-dimensional data, once the optimal Malahanobis
metric A is learned, generalizing to new points is easy—we
simply apply the definition of the Mahalanobis distance
directly. In the kernel space case, the optimal A has the form
(Davis et al. [15, Theorem 1]):

A ¼ I þXMXT ; ð6Þ

where M ¼ K�1
0 ðK �K0ÞK�1

0 and K is the optimal learned
kernel matrix. By expanding ðxxa � xxbÞTAðxxa � xxbÞ using (6),
the learned distances between any pair of points ðxxa; xxbÞ can
be computed using only inner products of the data vectors,
and hence, can be applied in kernel space:

ðxxa � xxbÞTAðxxa � xxbÞ
¼ ðxxa � xxbÞT ðI þXMXT Þðxxa � xxbÞ
¼ ðxxa � xxbÞT

�
I þXK�1

0 ðK �K0ÞK�1
0 XT

�
ðxxa � xxbÞ:

By performing the updates in kernel space, the storage
requirements change from Oðd2Þ to Oðn2Þ. In many cases,
both the dimensionality and the number of data points are
large, and so both updates are infeasible. However, as given
above, the learned distances are linear in K and, as a result,
we can constrain distances between any pair of points. This
makes it possible to limit the size of our base kernel matrix:
We choose a small set of c basis points, form K0 over these
basis points and then constrain distances between any pair
of points in terms of the initial kernel function K0ðxxa; xxbÞ.
Because the learned distances are still linear in K, the
resulting optimization problem may still be efficiently
solved, allowing us to scale to very large data sets with
very high dimensionality. While the kernelization approach
was given in [15], the use of constraints outside of the input
kernel matrix (i.e., the one defined over the basis points) has
not previously been explored.

In the next section, we show how to constrain the
distribution of randomized hash functions according to a
learned parameterization, in the event that At can be

2146 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009

1. Note that, alternatively, the constraints may also be specified in terms
of relative distances, i.e., dAðxxi; xxjÞ < dAðxxi; xxkÞ.

manipulated directly. Then we derive an implicit formulation
that enables information-theoretic learning with high-dimen-
sional inputs for which At cannot explicitly be represented.

3.3 Hashing for Semi-Supervised Similarity Search

A family of locality-sensitive hash (LSH) functions F is a
distribution of functions where the following holds: For any
two objects xx and yy,

Pr
h2F

hðxxÞ ¼ hðyyÞ½ � ¼ simðxx; yyÞ; ð7Þ

where simðxx;yÞ is some similarity function defined on the
collection of objects, and hðxxÞ is a hash function drawn from
F that returns a single bit [38]. Note that there is a related
definition of LSH functions proposed in [37], however, in this
paper, we use the one proposed in [38] only. Concatenating a
series of b hash functions drawn fromF yields b-dimensional
hash keys (bit strings). When hðxxÞ ¼ hðyyÞ, xx and yy collide in
the hash table. Because the probability that two inputs collide
is equal to the similarity between them, highly similar objects
are indexed together in the hash table with high probability.
On the other hand, if two objects are very dissimilar, they are
unlikely to share a hash key. Note that (7) is essentially the
“gateway” to locality-sensitive hashing: If one can provide a
distribution of hash functions guaranteed to preserve this
equality for the similarity function of interest, then approximate
nearest neighbor indexing may be performed in sublinear
time. Existing LSH functions can accommodate the Ham-
ming distance [37], Lp norms [39], and inner products [38],
and such functions have been explored previously in the
vision community [44], [5], [42].

In the following, we present new algorithms to construct
LSH functions for learned metrics. Specifically, we intro-
duce a family of hash functions that accommodates learned
Mahalanobis distances, where we want to retrieve examples
xxi for an input xxq for which the value dAðxxi; xxqÞ resulting
from (1) is small, or, in terms of the kernel form, for which
the value of sAðxxi; xxqÞ ¼ xxTq Axxi is high.

3.4 Explicit Formulation

For the explicit case, we show how to adapt the randomized
hyperplane hashing approach of [38], which further follows
from results in [45]. In the process of designing a randomized
algorithm for the MAX-CUT problem, Goemans and
Williamson demonstrated the following: Given a collection
of vectors xx1; . . . ; xxn on the unit sphere, and a randomly
generated vector rr, the following relationship holds:

Pr
�
sign

�
xxTi rr

�
6¼ sign

�
xxTj rr

��
¼ 1

�
cos�1

�
xxTi xxj

�
:

In other words, the sign of a vector’s inner product with a
random hyperplane will likely be the same for vectors
having a small angle between them. In [38], Charikar uses
this result to design hash functions for the case where the
inner product is the similarity function of interest. In
particular, the following hash function is locality-sensitive
when sim is the dot product:

hrrðxxÞ ¼ 1; if rrTxx � 0;
0; otherwise;

�
ð8Þ

Pr½hrrðxixiÞ ¼ hrrðxjxjÞ� ¼ 1� 1

�
cos�1

�
xxTi xxj

�
; ð9Þ

where again rr is a random hyperplane of the same
dimensionality as input xx.

We extend this to accommodate learned Mahalanobis
distances. Given the matrix A for a metric learned as above,2

such that A ¼ GTG, we generate the following randomized
hash functions hrr;A, which accept an input point and return
a hash key bit:

hrr;AðxxÞ ¼ 1; if rrTGxx � 0;
0; otherwise;

�
ð10Þ

where the vector rr is chosen at random from a d-dimensional
Gaussian distribution with zero mean and unit variance.
Thus, by parameterizing the hash functions instead by G
(which is computable since A is p.d.), we obtain the
following relationship:

Pr hrr;AðxxiÞ ¼ hrr;AðxxjÞ
� �

¼ 1� 1

�
cos�1 xxTi Axxjffi

jGxxijjGxxjj
p
 !

;

which sustains the LSH requirement of (7) for a learned
Mahalanobis metric, whether A is computed using the
method of [15] or otherwise [10], [13], [11], [14]. Essentially,
we have shifted the random hyperplane rr according to A
and, by factoring it by G, we allow the random hash
function itself to “carry” the information about the learned
metric. The denominator in the cosine term normalizes the
learned kernel values.

In this case, we could equivalently transform all the data
according to A prior to hashing; however, the choice of
presentation here helps set up the more complex formula-
tion we derive below. Note that (10) requires that the input
dimension d be low enough that the d� d matrix A can be
explicitly handled in memory, allowing the updates in (4).

3.5 Implicit Formulation

We are particularly interested in the case where the
dimensionality d may be very high—say, on the order of
104 to 106—but the examples are sparse and therefore can be
stored efficiently (e.g., bags of words or histogram pyramids
[4], [9]). Even though the examples are each sparse, the
matrix A can be dense, with values for each dimension. In this
case, the kernelized metric learning updates in (5) are
necessary. However, this complicates the computation of
hash functions as they can no longer be computed directly as
in (10) above. Thus, we next derive a new algorithm to make
simultaneous implicit updates to both the hash functions
and the metric. The idea is to use the same hash functions as
in (10), but to express G in a form that is amenable to
computing the hash bit over high-dimensional input data.

We denote high-dimensional inputs by �ðxxÞ to mark their

distinction from the dense inputs xx handled earlier. We are

initially given c examples that participate in similarity or

dissimilarity constraints. Let � ¼ ½�ðxx1Þ; . . . ; �ðxxcÞ� be the

d� c matrix of those initial c data points, and let �ðxxiÞT�ðxxjÞ
be the initial (nonlearned) kernel value between example xxi
and the input xxj. Initially, K0 ¼ �T�, and so, implicitly,

KULIS ET AL.: FAST SIMILARITY SEARCH FOR LEARNED METRICS 2147

2. A variable without a subscript t denotes its value after convergence.

A0 ¼ I. As in the explicit formulation above, the goal is to

wrap G into the hash function, i.e., to compute rrTG�ðxxÞ, but

now we must do so without working directly with G.
In the following, we will show that an appropriate hash

function hrr;A for inputs �ðxxÞ can be defined as:

hrr;Að�ðxxÞÞ ¼ 1; if rrT�ðxxÞ þ
Pc

i¼1 �
r
i �ðxxiÞ

T�ðxxÞ � 0;
0; otherwise;

�
ð11Þ

where �ðxxiÞT�ðxxÞ is the original kernel value between a

constrained point xxi and the query xx, and �ri are coefficients

computed once (offline) during metric learning (and will be

defined below). Note that, while G is dense and therefore

not manageable, computing rrT�ðxxÞ is computationally

inexpensive as only the entries of rr corresponding to

nonzero entries in �ðxxÞ need to be generated. Should the

inputs be high-dimensional but dense, our implicit form is

still valuable, as we bypass computing Oðd2Þ products with

G and require only OðdÞ inner products for rrT�ðxxÞ.
Next, we present a construction to expressG in terms of the

initially chosen c data points, and thus, a method to compute

(11) efficiently. Our construction relies on two technical

lemmas, which are given in the Appendix of this paper.

Recall the update rule for A from (4): Atþ1 ¼ At þ
�tAtvvtvv

T
t At, where vvt ¼ �ðyytÞ � �ðzzzztÞ, if points yyt and zzt are

involved in the constraint under consideration at iteration t.

We emphasize that just as this update must be implemen-

ted implicitly via (5), so too must we derive an implicit

update for the Gt matrix required by our hash functions.

Since At is p.d., we can factorize it as At ¼ GT
t Gt, which

allows us to rewrite the update as

Atþ1 ¼ GT
t

�
I þ �tGtvvtvv

T
t G

T
t

�
Gt:

As a result, if we factorize I þ �tGtvvtvv
T
t G

T
t , we can derive an

update for Gtþ1:

Gtþ1 ¼
�
I þ �tGtvvtvv

T
t G

T
t

�1=2
Gt

¼
�
I þ �tGtvvtvv

T
t G

T
t

�
Gt;

ð12Þ

where the second equality follows from Lemma 1 using
yy ¼ Gtvvt, and �t is defined accordingly (see the Appendix).

Using (12) and Lemma 2, Gt can be expressed as
Gt ¼ I þ �St�

T , where St is a c� c matrix of coefficients
that determines the contribution of each of the c points to G.
Initially, S0 is set to be the zero matrix, and from there,
every Stþ1 is iteratively updated in Oðc2Þ time via

Stþ1 ¼ St þ �tðI þ StK0Þðeeit � eejtÞðeeit � eejtÞ
T ðI þK0S

T
t Þ

ðI þK0StÞ:

Using this result, at convergence of the metric learning
algorithm, we can compute G�ðxxÞ in terms of the c2 input
pairs ð�ðxxiÞ; �ðxxjÞÞ as follows:

G�ðxxÞ ¼ �ðxxÞ þ �S�T�ðxxÞ

¼ �ðxxÞ þ
Xc
i¼1

Xc
j¼1

Sij�ðxxjÞ�ðxxiÞT�ðxxÞ:

Therefore, we have

rrTG�ðxxÞ ¼ rrT�ðxxÞ þ
Xc
i¼1

Xc
j¼1

Sijrr
T�ðxxjÞ�ðxxiÞT�ðxxÞ

¼ rrT�ðxxÞ þ
Xc
i¼1

�ri �ðxxiÞ
T�ðxxÞ;

where �ri ¼
P

j Sijrr
T�ðxxjÞ and is a notation substitution for

the first equality. This notation reflects that the values of

each �ri rely only on the basis points, and thus can efficiently

be computed in the training phase, prior to hashing

anything into the database. Critically, the number of terms

in this sum is the number of basis constrained points c—not

the total number of constraints used during metric learning,

nor the number of total database points. Finally, having

determined the expression for rrTG�ðxxÞ, we arrive at our

hash function definition in (11). Note the analogy between

the use of rrTGxx and rrTG�ðxxÞ in (10) and (11), respectively.

Also note that our approach avoids computing the

eigenvalue/Cholesky decomposition of the high-dimen-

sional matrix At and enables efficient updates to Gt.
This section entails one of the two main technical

contributions of this work: explicit and implicit methods
to construct semi-supervised hash functions. We emphasize
that our formulation is theoretically sound and in itself is
novel; what is accomplished would not be possible with
simple merging of the metrics in [15] with LSH.

3.6 Searching Hashed Examples

Having defined an algorithm for drawing locality-sensitive
hash functions for learned metrics, we can apply existing
methods [37], [38] to perform sublinear time approximate
similarity search. Given N database points and an input
query xxq, approximate near-neighbor techniques guarantee
retrieval of example(s) within the radius ð1þ �ÞD from xxq in
OðN1=ð1þ�ÞÞ time, where the true nearest neighbor is at a
distance of D from xxq.

To generate a b-bit hash key for every example, we select
b random vectors ½rr1; . . . ; rrb� to form b hash functions. The
hash key for an input xx is then the concatenation of the
outputs of (10) (or, similarly, the outputs of (11) for an input
�ðxxÞ). The trade-off in the selection of b is as follows: Larger
values will increase the accuracy of how well the keys
themselves reflect the metric of interest, but will also
increase computation time and can lead to too few collisions
in the hash tables. On the other hand, if b is lower, hashing
will be faster, but the key will only coarsely reflect our
metric, and too many collisions may result.

The problem of indexing into the database with xxq is then
reduced to hashing with these same b functions and
retrieving items corresponding to database bit vectors
having minimal distance to the query. A query hashes to
certain buckets in the hash table, where it collides with
some small portion of the stored examples. For this step, we
employ the technique for approximate search in Hamming
space developed by Charikar [38], which requires searching
OðN1=ð1þ�ÞÞ examples for the k ¼ 1 approximate-NN. Given
the list of database hash keys, M ¼ 2N1=ð1þ�Þ random
permutations of the bits are formed and each list of

2148 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009

permuted hash keys is sorted lexicographically to form
M sorted orders. A query hash key is indexed into each
sorted order with a binary search, and the 2M nearest
examples found this way are the approximate nearest
neighbors. See [38] for details.

Having identified these nearest bit vectors, we then
compute the actual learned kernel values between their
associated original data points and the original query. The
hashed neighbors are ranked according to these scores, and
this ranked list is used for k-NN classification, clustering,
etc., depending on the application at hand.

3.7 Sparse High-Dimensional Embedding
Functions

In Section 3.5, we formulated a method to implicitly update
the distribution from which hash functions are drawn
alongside the kernelized metric learner. This formulation
accommodates high-dimensional inputs, and is well-suited
to a number of existing common representations, including
sparse bag-of-words vectors (text or visual). In addition, in
this section, we describe embedding functions that will
enable kernel learning for two useful matching kernels.
These embeddings make it possible to express the desired
base kernel as a dot product, which can then be improved
with the Mahalanobis-based metric learning. The first
matching considered is the pyramid match kernel [9] and
is a review of the embedding function presented by
Grauman and Darrell in [42]. We include it here to help
elucidate a result in which we apply our implicit formula-
tion in Section 4. The second matching is the proximity
distribution kernel [46], and the embedding function we
provide is a novel contribution of this work.

For both embeddings, the raw inputs are unordered sets
of points, where each set Xi contains some number mi of
d-dimensional points: X ¼ fxx1; . . . ; xxmi

g, with xxj 2 <d, for
all j ¼ 1; . . . ;mi. (Note that this is a reuse of the variable d:
The dimension of these points is unrelated to the
dimensionality of the A matrices described above.) In
image matching applications, for example, these points
are typically local image features that each describes some
region in an image (e.g., SIFT [1]), and each image yields
one set of points. The two kernels for which we develop
embedding functions offer two different ways to compare
the point sets based on feature correspondences. In the
following, we first define the embedding function for each
of the two kernels and then describe how both embeddings
relate to the randomized hash functions.

3.7.1 Pyramid Match Embedding

The pyramid match is a low-distortion approximation3 for
the least-cost partial correspondence between two sets of
feature vectors and requires only linear time in the number
of points per set to compute. The least-cost partial matching
between sets of features is the one-to-one assignment
mapping the smaller set to the larger one in such a way
that the summed cost between matched points is mini-
mized. The matching cost essentially indicates how well the

parts in two sets correspond. The main idea of the pyramid
match approximation is to decompose the feature space into
a multiresolution hierarchy and then for each point set to
collect histograms at each resolution. Intersecting two
histograms representing two different point sets implicitly
counts the number of point matches at each possible
distance (bin resolution), and a weighted combination of
these changing intersection counts provides the total
matching score [9].

A point set X is first converted to a multiresolution
histogram (pyramid):

�ðXÞ ¼ ½H0ðXÞ; . . . ; HL�1ðXÞ�; ð13Þ

where L ¼ dlog2 Be refers to the number of pyramid levels,
B is the feature value range, and HiðXÞ is a histogram
vector formed over points in X using d-dimensional bins of
side length 2i. Nonuniformly shaped bins are also possible
and may be formed by hierarchical clustering on a corpus of
features [48]. The pyramids are represented sparsely, with
up to only m ¼ jXj nonzero entries per level.

The (unnormalized) pyramid match kernel (PMK) value
for sets Y and Z is defined as

~KPMK Y;Zð Þ ¼ wL�1IL�1 þ
XL�2

i¼0

ðwi � wiþ1ÞI i; ð14Þ

where I i ¼
P

j minðHðjÞi ðYÞ, H
ðjÞ
i ðZÞÞ is the intersection

between the ith histogram in �ðYÞ and �ðZÞ, respectively,
and H

ðjÞ
i is the count in bin j of Hi. To measure matching

similarity, the weights wi are set to be inversely propor-
tional to the size of the histogram bins at level i, with the
constraint that wi � wiþ1 (e.g., wi ¼ 1

2i is a valid option);
alternatively, the weights may be learned in a discrimina-
tive fashion via multiple kernel learning [27].

Since histogram intersection can be mapped to a dot
product by representing the bin counts with a unary-style
encoding [49] and since a weighted intersection value is
equivalent to the intersection of weighted counts, one can
map this kernel to a simple dot product. In [42], an
embedding function is designed that maps each histo-
gram pyramid to a single vector in such a way that the
inner product between any two such mapped outputs
will give the pyramid match kernel value between the
original point sets.

Let Uð½wH�Þ denote the following (padded) unary
encoding of the histogram H weighted by w:

U ½wH�ð Þ ¼ 1; . . . ; 1
zfflfflfflffl}|fflfflfflffl{wHð1Þ

; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{P�wHð1Þ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
first bin

; . . . ; 1; . . . ; 1
zfflfflfflffl}|fflfflfflffl{wHðrÞ

; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{P�wHðrÞ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
last bin

0
B@

1
CA; ð15Þ

where P is the maximum possible weighted count in any
histogram bin, and HðjÞ is the count in bin j of H. If
weighted counts are real-valued, this process can in theory
proceed by scaling to a given precision and truncating to
integers. With the normalization factor also scaled, the
output remains equivalent. However, the unary encoding
need not be explicitly computed in practice. Let viðXÞ refer
to the histogram for set X at pyramid level i, weighted by
w ¼ wi � wiþ1: viðXÞ ¼ ½ðwi � wiþ1ÞHiðXÞ�.

KULIS ET AL.: FAST SIMILARITY SEARCH FOR LEARNED METRICS 2149

3. “Low-distortion” refers to the bounded error between the approximate
match cost given by the pyramid match and the true optimal least-cost
partial match. Error bounds for the PMK are shown in [47].

The following embedding fPMK serves to map the set of
vectors X to a single vector [42]:

fPMKðXÞ ¼ ½Uðv0ðXÞÞ;Uðv1ðXÞÞ;Uðv2ðXÞÞ; . . . ;

UðvL�2ðXÞÞ;Uð½wL�1HL�1ðXÞ�Þ�;

and the dot product between two such encodings for sets Y
and Z yields the unnormalized pyramid match score from
(14) above: fPMKðYÞ � fPMKðZÞ ¼ ~KPMKðY;ZÞ.

The length jfPMKðYÞj of an encoding vector fPMKðYÞ is
simply the sum of its total number of nonzero (one) entries.
Since self-intersection of a histogram returns the number of
total points in the histogram (IðHðYÞ; HðYÞÞ ¼ jYj), the
length of an embedding vector will be equivalent to the
original set’s self-similarity score under the pyramid match:

jfPMKðYÞj ¼ wL�1jYj þ
XL�2

i¼0

ðwi � wiþ1ÞjYj

¼ ~KPMK Y;Yð Þ:
ð16Þ

We can compute similar embeddings and hash functions for
the “vocabulary-guided” pyramid match given in [48], or the
spatial pyramid match defined in [50], since the intersected
pyramids there too can be written as a dot product between
weighted histograms. Because a vocabulary-guided pyra-
mid uses irregularly shaped histogram bins, for that
embedding, the weights must be applied at the level of the
bins instead of at the level of the pyramid resolutions.

3.7.2 Proximity Distribution Embedding

Next we show how to embed a related kernel developed by
Ling and Soatto in [46]. This kernel matches distributions of
co-occurring local descriptor types as they appear at
increasing distances from one another in an image. In this
case, each feature point xj is first mapped to one of
k discrete “codewords” or “visual words,” which are the
prototypical local feature types identified via clustering on
some previous corpus of descriptors. Each point set is
converted to a k� k�R-dimensional histogram that counts
the number of times each visual word co-occurs within the
r ¼ 1; . . . ; R spatially nearest neighbor features of any other
visual word. Specifically, for a given image input described
with point set X, each histogram entry HXði; j; rÞ is defined
as the number of times visual word type j occurs within the
r spatially nearest neighbors of a visual word of type i.
Since r ¼ 1; . . . ; R, this is a cumulative distribution of the
co-occurring pairs of words.

The (unnormalized) proximity distribution kernel (PDK)
value between two images with feature sets Y and Z is then

KPDKðY;ZÞ ¼
Xk
i¼1

Xk
j¼1

XR
r¼1

min HYði; j; rÞ; HZði; j; rÞ
� �

; ð17Þ

where HY and HZ are the associated arrays of histograms
computed for the two input feature sets [46].

To write our embedding function, we simply need to
flatten the three-dimensional array of cumulative histograms
and write it as an implicit unary encoding. Let vxðrÞ refer to
the co-occurrence counts at neighborhood rank r for a given
word x against every other word: vxðrÞ ¼ ½Hðx; 1; rÞ; . . . ;
Hðx; k; rÞ� and let vðrÞ refer to all co-occurrence counts at

neighborhood rank r: vðrÞ ¼ ½v1ðrÞ; . . . ; vkðrÞ�. Then, using the
same notation U as above, the following embedding function
maps the proximity distribution kernel to an inner product:

fPDKðXÞ ¼ ½Uðvð1ÞÞ; . . . ;UðvðRÞÞ� and

fPDKðYÞ � fPDKðZÞ ¼ KPDKðY;ZÞ:
ð18Þ

3.7.3 Hashing with the Embedded Kernels

The embedding functions for these kernels allow us to
perform sublinear time similarity search with random
hyperplane hash functions, whether according to their
“raw” definitions, or according to their learned variants.
For both kernels’ original definitions, we can now hash using
the inner product LSH function from (10). Specifically, we
have

Pr½h~rðfðYÞÞ ¼ h~rðfðZÞÞ� ¼ 1� 	ðfðYÞ; fðZÞÞ
�

; where

	ðfðYÞ; fðZÞÞ ¼ cos�1 fðYÞ � fðZÞffi
jfðYÞjjfðZÞj

p
 !

¼ cos�1ðKðY;ZÞÞ;

where K and f refer to the appropriate version of KPMK

or KPDK and fPMK or fPDK , respectively. The last term is
the similarity value normalized according to the product
of the self-similarity scores. For both kernels and their
learned variants, we can now perform hashing using the
implicitly updated hash function we defined in (11), with
�ðxxÞ ¼ fðXÞ.

Even forgoing the explicit unary encoding, the dimen-
sionality of the embedding space is very high, with an
exponential dependence on the dimensionality of the
feature points (in the uniform-bin PMK case), an exponen-
tial dependence on the number of levels (in the nonuniform
bin PMK case), and with d ¼ k� k�R (in the PDK case).
However, the histograms are very sparsely populated, and
only nonzero entries in the embedding output need ever be
touched when computing a dot product (or hash function
output). Likewise, with our implicit learned kernel hashing,
these correspondence-based measures will be improved in
kernel space according to the provided paired constraints,
and then hashing requires only dot products between a new
input and some constrained inputs and the random
hyperplanes (see Section 3.5).

4 RESULTS

Our approach is in general applicable for content-based
search of large databases according to learned Mahalanobis
metrics. In this section, we provide results with a variety of
data sets to illustrate its flexibility with respect to repre-
sentations, constraints, and base metric/kernel functions.
First, we demonstrate our algorithm in the low-dimensional
setting applied to a nearest neighbor classification problem
for software support. Then, we evaluate our algorithm in the
implicit setting for image search in three distinct domains:
exemplar-based recognition, pose estimation, and feature
indexing. In all cases, our experimental goal is twofold: 1) to
evaluate the impact on accuracy a learned metric has relative
to both standard baseline metrics and state-of-the-art
methods, and 2) to test how reliably our semi-supervised
hash functions preserve the learned metrics in practice when

2150 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009

performing sublinear time database searches. We therefore
report results in terms of both accuracy improvements as
well as speedups realized.

Throughout, we select examples for (dis)similarity
constraints randomly from a pool of examples. For
categorical data, (dis)similarity constraints are associated
with points having different (same) labels; for data with
parameter vectors, constraints are determined based on
examples’ nearness in the parameter space. We compute
the distance between all pairs of a subset (100) of the
database examples according to the nonlearned metric, and
then let the distance constraints’ lower ‘ and upper u limits
be the first and 99th percentile of those values, respectively.
We measure accuracy in terms of the error of the retrieved
nearest neighbors’ labels, which is either a parameter vector
(in the case of the pose data) or a class label (in the case of
the systems data, object images, and patches).

4.1 Software Support for Latex Compilation Errors

We first evaluate our method for learned metric hashing on
the nearest neighbor (NN) classification problem using data
from the CLARIFY system of Ha et al. [51]. CLARIFY assists a
programmer in diagnosing errors by identifying previously
seen abnormal termination reports with similar program
features, and pointing the programmer to other users who
have had similar problems. We experiment with a database
of N ¼ 3;825 such examples collected from the Latex
typesetting program. The features are d ¼ 20-dimensional,
and so our explicit formulation for learning hash functions
is most appropriate. Paired similarity constraints are
generated using 20 labeled examples from each class. For
10 random partitions of the data, we extract 30 examples for
each of its nine classes, and treat the remainder as database
examples. We measure the k ¼ 4 nearest neighbor classifica-
tion accuracy and search times over all 270 queries per run,
under four settings: the original euclidean distance metric
and a linear scan, the original distance with LSH, the
learned metric with a linear scan, and the learned metric
with LSH. For both hashing cases, we fix � ¼ 1:5. Recall that
this parameter controls the trade-off between speed and
accuracy for the approximate search, so a value of � ¼ 1:5
means searching 2N ð1=ð1þ�ÞÞ ¼ 35 examples in this case.

Fig. 2 shows the resulting accuracy and complexity gains.
(Throughout, our approach is denoted by “ML.”) By
incorporating the paired constraints, the learned metric
shows clear accuracy gains over the unconstrained euclidean
distance, yielding about 10 percent higher correct classi-
fication rates. The k-NN rates for both associated hashed
results are, on average, as good as the linear scan results,
and in this case, have little dependence on the number of
hash functions used. As b increases, however, the hash keys
become more specific and allow larger amounts of the
database to be ignored for any given query (right-hand
plot). When searching only 5 percent of the database, our
learned hash functions suffer no loss in accuracy yet enable
an average 13x speedup (maximum speedup 34x) relative
to an exhaustive scan with the learned metric (including the
overhead cost of computing the hash keys). Interestingly,
for the same values of � and b, the number of examples
searched with the learned hash functions is noticeably
lower than that of the generic hash functions and has a
tighter distribution. While the indexing guarantees remain
the same, we infer that, just as the learned metric adjusts the
feature space so that in-class examples are more closely
clustered, the learned hash functions better map them to
distinct keys.

4.2 Human Body Pose Estimation

In this section, we demonstrate our method applied to
single-frame human body pose estimation. Example-based
techniques to infer pose (e.g., [6], [5]) store a large database
of image examples that are labeled with their true pose (i.e.,
3D joint positions or angles). A query image is indexed into
the database according to image similarity and the query’s
pose is estimated based on the pose parameters attached to
those nearest neighbors. Thus, our objective for this task is
to learn a metric for the image features that reports small
distances for examples that are close in pose space, and to
make the search scalable by hashing according to a learned
metric. This is similar to the goals of the parameter-sensitive
hashing (PSH) method of [5]. However, our approach is
distinct from [5] in that it allows one to seamlessly both
hash and search according to the learned metric. As a result,
it may provide more accurate retrievals, as we show

KULIS ET AL.: FAST SIMILARITY SEARCH FOR LEARNED METRICS 2151

Fig. 2. Comparison of the accuracy (left) and time requirements (right) when hashing with the original L2 and learned (“ML”) metrics for the Latex

data set. The left plot shows k-NN classification accuracy. The right plot shows the search time in terms of the percentage of database items

searched per query, as a function of the number of hash bits b. Results are from 10 runs with random query/database partitions, with � ¼ 1:5. Our

learned hash functions reduce the search to about 5 percent of the database, with virtually no loss in accuracy over the exhaustive linear scan.

empirically below. More generally, in contrast to [5], the
proposed approach enables fast search for a class of metrics
and kernels, which provides flexibility regarding both the
user-selected base metric as well as the learning algorithm
and types of constraints used to construct the metric.

We use a database of examples provided by the authors
of [52], where PSH is employed within a pose tracker. The
images were generated with Poser graphics software:
Human figures in a variety of clothes are rendered in many
realistic poses drawn from mocap data. Our main motiva-
tion for working with this data set is its sheer scale: It has
half a million labeled examples, which means that we will be
able to quantify the quality of any retrieval. Each image is
represented by a d ¼ 24;016-dimensional multiscale edge
detection histogram (EDH). The vectors’ high dimension-
ality requires our implicit formulation for semi-supervised
hash functions. We use a linear kernel over c ¼ 50 randomly
selected examples as the initial kernel (K0). We hold out
1,000 test queries examples and generate 1,000,000 similarity
constraints among 50,000 of the remaining training exam-
ples. For each, we constrain the distance of the 10 nearest
exemplars (in terms of pose parameters) to be less than ‘.
Similarly, of all the examples with a pose distance greater
than a threshold t, 10 are randomly picked and their distance
to the example is constrained to be greater than u. The values
of t and c are selected with cross validation. Note that
whereas the previous data set illustrated the use of label-
based constraints, which the learned metric uses to map
same-class examples close to one another, here we have

examples “labeled” with real-valued parameter vectors, so
the learned metric will adjust the feature space distances to
be more like the desired parameter space distances.

As baselines, we compute results for NN search with
both the euclidean distance (L2) on the EDHs and the
Hamming distance on the PSH embeddings provided by
the authors of [52]. To hash with the L2 baseline, we simply
apply [38]. We also use principal components analysis
(PCA) to reduce the dimensionality of the EDH vectors in
order to apply our explicit formulation for comparison. We
measure the error for a query by the mean distance of its
true joint positions to the poses in the k-NN. To give a sense
of the variety of the data, a random database example is on
average at a distance of 34.5 cm from a query.

Table 1 shows the overall errors for each method. With a
linear scan, ML yields the most accurate retrievals of all
methods, and with hashing it outperforms all the hashing-
based techniques. The PCA-based results are relatively
poor, indicating the need to use the full high-dimensional
features, and thus our implicit formulation. A paired-error
T -test reveals that our improvements over PSH and L2 are
statistically significant, with 99.95 percent confidence.

Fig. 4 shows the NN retrieved by each method for five
typical queries. In most examples, L2 and PSH estimate the
overall pose reasonably well, but suffer on one or more
limbs, whereas our approach more precisely matches all
limbs and yields a lower total error. While PSH does not
improve over the L2 baseline for this data set (as it did for
data in [5]), it does do nearly as well as L2 when using about
16x fewer dimensions; it appears its main advantage here is
the ability to significantly reduce the dimensionality.

Our semi-supervised hash functions maintain the accu-
racy of the learned metric, but for substantially less search
time than the linear scan. With our Matlab implementation, a
linear scan requires 433.25 seconds per query, while our
hashing technique requires just 1.39 seconds. On average,
metric learning with hashing searches just 0.5 percent of the
database. Fig. 3 compares the error obtained by MLþ hashing
and L2þ hashing when varying the number of hash bits (left
plot) and the search time allowed (right plot). For a large
number of bits, the hash keys are more precise, and hence the
error drops (although hashing overhead increases).

2152 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009

TABLE 1
Mean Pose Error (in Centimeter) Obtained with Each Method

Our approach (denoted by ML) outperforms both the L2 baseline as well
as the PSH method of Shakhnarovich et al. [5].

Fig. 3. Left: Error as a function of the number of hash bits. Fast search with the learned metric is more accurate than the L2 baseline. For both, the
error converges around b ¼ 500 bits. Right: Hashing error relative to an exhaustive linear scan as a function of �, which controls the search time
required.

Similarly, since M ¼ 2N1=ð1þ�Þ, for high values of � we must
search fewer examples, but accuracy guarantees decrease.

4.3 Exemplar-Based Object and Scene
Categorization

In this section, we evaluate our method applied for exemplar-
based object and scene recognition with the Caltech-101, a
common benchmark, and a data set of scene images down-
loaded from Flickr. The goal is to predict the object or scene
class of a test example by finding the most visually similar
examples in the labeled database, and then allowing those
neighbors to cast votes on the label. In this set of experiments,
we demonstrate the flexibility of our approach relative to the
choice of a base metric, with results using three different
kernels defined in the vision literature [9], [46], [7].

4.3.1 Caltech-101 Database

To compare the Caltech-101 images, we consider learning
kernels on top of Grauman and Darrell’s PMK [9] applied to
SIFT features, and the kernel designed by Zhang et al. [7]
applied to geometric blur features. As described above, the
PMK uses multiresolution histograms to estimate the
correspondence between two sets of local image features.
To hash with the nonlearned PMK, the pyramids are
embedded as described in Section 3.7.1. The pyramid inputs
are sparse but extremely high-dimensional (d ¼ Oð106Þ);
thus, explicitly representing A is infeasible and the implicit
form of our technique is necessary. The kernel in [7] also
measures the correspondences between local features, but
by averaging over the minimum distance to matching
features in terms of the descriptors and their position in the
image; we will refer to it as CORR. Note that we can learn
kernels for both the PMK and CORR using the kernel
learning formulation from [15], but can only hash with the
learned PMK, since an explicit vector space representation
(�ðxxÞ) for the CORR kernel is unknown.

We first evaluate the effectiveness of metric learning
itself on this data set. We pose a k-NN classification task,

and evaluate both the original (PMK or CORR) and learned
kernels when used in a linear scan mode. We set k ¼ 1 for
our experiments; this value was chosen arbitrarily. We vary
the number of training examples T per class for the
database, using the remainder as test examples, and
measure accuracy in terms of the mean recognition rate
per class, as is standard practice for this data set.

Fig. 5 shows our results relative to all other existing
techniques that have been applied to this data set. Our
approach outperforms all existing single-kernel classifier
methods when using the learned CORR kernel: We achieve
61.0 percent accuracy for T ¼ 15 and 69.6 percent accuracy
for T ¼ 30. Our learned PMK achieves 52.2 percent accuracy
for T ¼ 15 and 62.1 percent accuracy for T ¼ 30. Fig. 6
shows specifically the comparison of the original baseline
kernels for NN classification. The plot on the left reveals
gains in NN retrieval accuracy; notably, our learned kernels
with simple NN classification also outperform the baseline
kernels when used with SVMs [7], [9]. Only the results of
recent multiple-metric approaches [8], [20], [28] (shown
with dashed lines in Fig. 5) are more accurate, though they
also incur the greater cost of applying each of the base
kernels in sequence to all examples, while our method
requires only one comparison to be computed per example.

Now we consider hashing over the learned PMK. For
T ¼ 15, our learned hash functions achieve 47 percent
accuracy and require about 10x less computation time than
a linear scan when accounting for the hash key computation
(here, N ¼ 1;515, which is modest compared to the pose
data evaluated above). The right-hand plot in Fig. 6 shows
the error of our learned PMK-based hashing compared to
the baseline [42] as a function of �. For these data, the value
of b had little effect on accuracy. As with the linear scan
search, we still realize significant accuracy improvements,
but now with a guaranteed sublinear time search.

4.3.2 Flickr Scene Database

To evaluate our learned hash functions when the base kernel
is the PDK, we performed experiments with a data set of
5,400 images of 18 different tourist attractions from the
photo sharing site Flickr. We took three cities in Europe that
have major tourist attractions: Rome, London, and Paris. The

KULIS ET AL.: FAST SIMILARITY SEARCH FOR LEARNED METRICS 2153

Fig. 4. Examples of pose estimates. Each column contains a different
pose. The top row contains query images and the remaining rows show
the best pose retrieved by each method. The second row shows the best
pose obtained by our method (labeled ML-HASH). The coarse pose
estimates obtained by each method are somewhat similar, but with the
learned metric, our approach is able to more accurately obtain matches
for the fine details of the joint positions.

Fig. 5. Comparison against existing techniques on the Caltech-101. Our
method outperforms all other single metric/kernel approaches. ML+PMK
refers to our learned kernel when the pyramid match [9] is the base
kernel; ML+CORR refers to our learned kernel when the correspondence
kernel of [7] is the base kernel. The base kernel curves are the ones
labeled Grauman & Darrell (ICCV ’05) and Zhang et al. (CVPR ’06),
respectively, in the legend. (This figure is best viewed in color.)

tourist sites for each city were taken from the top attractions
in www.TripAdvisor.com under the headings Religious site,
Architectural building, Historic site, Opera, Museum, and
Theater. Overall, the list yielded 18 classes: 8 from Rome,
5 from London, and 5 from Paris. The classes are: Arc de
Triomphe, Basilica San Pietro, Castel SantAngelo, Colos-
seum, Eiffel Tower, Globe Theatre, Hotel des Invalides,
House of Parliament, Louvre, Notre Dame Cathedral,
Pantheon, Piazza Campidoglio, Roman Forum, Santa Maria
Maggiore, Spanish Steps, St. Paul’s Cathedral, Tower
Bridge, and Westminster Abbey. We downloaded the first
300 images returned from each search query to represent the
data for each class. Since not all images downloaded for a
given tag actually contain the proper scene, we manually
added ground truth labels. About 90 percent of the initial
tags on the downloaded images were accurate.

Duplicate images and images that had no response from
the interest point detectors were removed and then
replaced with lower ranked images so that the number of
images per category remained at 300. All images were
scaled down to have moderate width (320 pixels).

Note that the regular viewpoints and scales in the Caltech-
101 images above make it possible to improve the unordered
set representation using simply image coordinate positions,
which means that the PMK with features including spatial
position are adequate. For the Flickr data, however, the

viewpoint and scale vary significantly across instances of the
same scene, so the loose configurations of features captured
by the PDK provide a better way to preserve semi-local
geometry without being overly restrictive. We detect corner
and blob-like regions in the images using the Harris-affine
[53] and Maximally Stable Extremal Regions (MSER) [54]
detectors, and represent all regions with SIFT descriptors [1].
The PDK requires a codebook to quantize features; following
[46], we set the number of visual words to be k ¼ 200 and
include neighbors up to rankR ¼ 64. We use the embedding
provided in Section 3.7.2 for hashing with PDK.

We again pose a nearest neighbor classification task, and
compare results when using either a linear scan or hashing,
with the original base PDK or the learned PDK. We
randomly select 275 images per class for training and the
remaining images for testing. Fig. 7 shows the results. The
linear scan error for either hashing method shows the best
possible performance, and again as we decrease the
� parameter, we can expect more accurate results at the
cost of longer query times. The learned PDK achieves a
significantly higher accuracy than the original base PDK
while searching a smaller amount of the Flickr database.

4.4 Indexing Local Patch Descriptors

In this section, we evaluate our approach on a patch
matching task using data provided from the Photo Tourism

2154 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009

Fig. 6. Object recognition on the Caltech-101 data set. Left: Our learned kernels significantly improve NN recognition accuracy relative to their
nonlearned counterparts, the CORR and PMK kernels. Right: Comparison of the k-NN classification error when hashing with the original and
learned PMK. This plot shows the accuracy-search time trade-off when using the original or learned hashing functions. CORR refers to the
correspondence kernel proposed by Zhang et al. [7], and PMK refers to the pyramid match kernel [9].

Fig. 7. Scene classification on the Flickr data set. Left: Hashing error relative to an exhaustive linear scan as a function of �, which controls the
search time required. Right: Amount of the database searched as a function of �. Clearly, our method ML+PDK Hashing achieves significantly higher
accuracy while searching a smaller portion of the database.

project [2], [55]. The data set contains about 300,000 local
patches extracted from interest points in multiple users’
photos of scenes from different viewpoints. The objective is
to be able to rapidly identify any matching patches from the
same 3D scene point in order to provide correspondences to
a structure from motion algorithm. For this application,
classifying patches is not so useful; rather, one wants to find
all relevant patches. Thus, we measure accuracy in terms of
precision and recall.

We add random jitter (scaling, rotations, and shifts) to all
patches as prescribed in [55], extract both the raw patch
intensities and SIFT descriptors, and then pose the retrieval
task to the L2 baseline and our learned metrics for each
representation. To learn metrics, we gather constraints from
10,000 matching and nonmatching patch pairs, with a
50-50 mix taken from the Trevi and Halfdome portions of
the data. All methods are tested on 100,000 pairs from the
Notre Dame portion. The left plot in Fig. 8 compares their
accuracy via ROC curves for each feature and metric
combination; the numbers in the legend summarize the
error in terms of the false positive rate once 95 percent of the
true positives are retrieved. We see that MLþraw intensities
yields a significant gain over L2þraw, while ML+SIFT also
gives some improvement.4

Finally, we consider our ML-hashing algorithm for the
SIFT patches. We measure accuracy by the relevance of the
NN ranking: for increasing values of k, we compute the recall
rate within the top k-NN. We calculate this score with and
without hashing, and before and after metric learning. In
order to control k for the hashing, we consider as many
nearby hash bins as necessary. In the right plot in Fig. 8, we
see that the learned metric outperforms the L2 baseline and
hashing does not noticeably degrade accuracy. When
k ¼ 1;000, we search only 16.1 percent of the database when
hashing over the learned metric and, when k ¼ 1, we search
only 0.8 percent, leading to substantial gains in retrieval time
(about a factor of 80 versus linear scan).

5 CONCLUSIONS

We have introduced a method to enable efficient approx-

imate similarity search for learned metrics, and experiments

show good results for a variety of data sets, representations,

and base metrics. Our main contribution is a new algorithm

to construct theoretically sound locality-sensitive hash

functions—for both implicit and explicit parameterizations

of a Mahalanobis distance. For high-dimensional data, we

derive simultaneous implicit updates for both the hash

function and the learned metric. Experiments demonstrate

our technique’s accuracy and flexibility for a number of

large-scale search tasks.
In future work, we intend to explore online extensions to

our algorithm that will allow similarity constraints to be

processed in an incremental fashion, while still allowing

intermittent queries. We are also interested in considering

generalizations of our implicit hashing formulation to

accommodate alternative kernelized metric learning algo-

rithms, and in pursuing active constraint selection methods

within our framework.

APPENDIX

We prove the following lemmas to aid in our construction

in Section 3.

Lemma 1. Let B ¼ I þ �yyyyT be positive semidefinite. Then,

B1=2 ¼ I þ �yyyyT , with � ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ yyTyy�

p
� 1Þ=yyT yy.

Proof. Let B1=2 ¼ ðI þ �yyyyT Þ. Thus, B ¼ ðI þ �yyyyT Þ2.

Expanding yields I þ 2�yyyyT þ �2ðyyTyyÞyyyyT ¼ I þ ð2� þ
�2yyT yyÞyyyyT . For the lemma to hold, we require that ðI þ
�yyyyT Þ2 ¼ I þ �yyyyT and this holds when 2�þ �2yyTyy ¼ �.

Solving this quadratic equation for �, we obtain the

desired result. The eigenvalues of B are 1 and 1þ �yyT yy,

which is greater than or equal to 0 since B is positive

semidefinite. Thus,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �yyTyy

p
is real, so, � is real. tu

Lemma 2. For all t, if G0 ¼ I and S0 ¼ 0, then

KULIS ET AL.: FAST SIMILARITY SEARCH FOR LEARNED METRICS 2155

Fig. 8. Left: This plot illustrates accuracy improvements of the learned metric (ML) relative to L2 baselines, for both raw patches
(dimensionality d ¼ 4;096) and SIFT descriptors (dimensionality d ¼ 128). (Note that the axes are zoomed into the upper left-hand corner of the
curves.) Right: This plot shows the recall as a function of the number of SIFT patches retrieved, for our method and the L2 baseline. Our
semi-supervised hash functions maintain accuracy close to a linear scan (as seen by the overlapping ML Linear Scan and ML Hashing
curves), while requiring much less search time.

4. In this experiment, we were able to reproduce the baseline for L2 given
in [55]; however, we were unable to do so for their SIFT baseline for which 6
percent error is obtained. We suspect this is due to our unoptimized SIFT
extraction and that ML would continue to yield similar improvements as
above if provided better descriptors.

Gtþ1 ¼ I þ �Stþ1�T and

Stþ1 ¼ St
þ �tðI þ StK0Þðeeit � eejtÞðeeit � eejtÞ

T ðI þK0S
T
t ÞðI þK0StÞ:

Proof. We prove this lemma using induction. In the base

case, S0 ¼ 0, implying G0 ¼ I and GT
0G0 ¼ A0 ¼ I. Now,

let the hypothesis holds for step t, i.e., Gt ¼ I þ �St�
T .

Note that this form for Gt is analogous to the form for A

as given in (6) (however, the matrices S and M are not

equivalent). The update for matrix G at step tþ 1 is

given by

Gtþ1 ¼
�
I þ �tGtvvtvv

T
t G

T
t

�1=2
;

Gt ¼
�
I þ �tGtvvtvv

T
t G

T
t

�
Gt;

ð19Þ

where vvt ¼ �ðyytÞ � �ðzztÞ and � is given by Lemma 1.
Now, substituting for Gt, we get

Gtþ1 ¼ I þ �St�
T þ �tGtvvtvv

T
t G

T
t Gt: ð20Þ

Now, vvt ¼ �ðeeit � eejtÞ. Thus,

Gtvvt ¼ ðI þ �St�
T Þ�ðeeit � eejtÞ

¼ ð�þ �St�
T�Þðeeit � eejtÞ

¼ �ðI þ StK0Þðeeit � eejtÞ;
ð21Þ

where the last equality follows from �T� ¼ K0. Similarly,

�Gt ¼ �T ðI þ �St�Þ ¼ ð�þ �T�St�Þ ¼ ðI þK0StÞ�:
ð22Þ

Using (20), (21), and (22),

Gtþ1 ¼ I þ �St�
T þ �t�ðI þ StK0Þðeeit � eejtÞðeeit � eejtÞ

T�
I þK0S

T
t

�
ðI þK0StÞ�:

Thus, substituting,

Stþ1 ¼ St þ �tðI þ StK0Þðeeit � eejtÞðeeit � eejtÞ
T �I þK0S

T
t

�
ðI þK0StÞ

proves the lemma. tu

ACKNOWLEDGMENTS

The authors would like to thank Yong Jae Lee and Greg
Shakhnarovich for helpful discussions and for sharing the
Flickr and Poser data, and Simon Winder, Matthew
Brown, and Gang Hua for making the patch image data
available. This research was supported in part by the US
National Science Foundation (NSF) CAREER 0747356,
Microsoft Research, US Defense Advanced Research
Projects Agency (DARPA) VIRAT, NSF EIA-0303609, and
the Henry Luce Foundation.

REFERENCES

[1] D. Lowe, “Distinctive Image Features from Scale Invariant
Keypoints,” Int’l J. Computer Vision, vol. 60, no. 2, 2004.

[2] N. Snavely, S. Seitz, and R. Szeliski, “Photo Tourism: Exploring
Photo Collections in 3D,” Proc. ACM SIGGRAPH, pp. 835-846,
2006.

[3] A. Torralba, R. Fergus, and W.T. Freeman, “80 Million Tiny
Images: A Large Database for Non-Parametric Object and Scene
Recognition.” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 30, no. 11, pp. 1958-1970, Nov. 2008.

[4] J. Sivic and A. Zisserman, “Video Data Mining Using Configura-
tions of Viewpoint Invariant Regions,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2004.

[5] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast Pose Estimation
with Parameter-Sensitive Hashing,” Proc. IEEE Int’l Conf. Compu-
ter Vision, 2003.

[6] V. Athitsos and S. Sclaroff, “Estimating 3D Hand Pose from a
Cluttered Image,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2003.

[7] H. Zhang, A. Berg, M. Maire, and J. Malik, “SVM-KNN:
Discriminative Nearest Neighbor Classification for Visual Cate-
gory Recognition,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2006.

[8] A. Frome, Y. Singer, F. Sha, and J. Malik, “Learning Globally-
Consistent Local Distance Functions for Shape-Based Image
Retrieval and Classification,” Proc. IEEE Int’l Conf. Computer
Vision, 2007.

[9] K. Grauman and T. Darrell, “The Pyramid Match Kernel:
Discriminative Classification with Sets of Image Features,” Proc.
IEEE Int’l Conf. Computer Vision, 2005.

[10] E. Xing, A. Ng, M. Jordan, and S. Russell, “Distance Metric
Learning, with Application to Clustering with Side Information,”
Advances in Neural Information Processing Systems, 2002.

[11] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning a
Mahalanobis Metric from Equivalence Constraints,” J. Machine
Learning Research, vol. 6, pp. 937-965, June 2005.

[12] T. Hertz, A. Bar-Hillel, and D. Weinshall, “Learning Distance
Functions for Image Retrieval,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2004.

[13] K. Weinberger, J. Blitzer, and L. Saul, “Distance Metric Learning
for Large Margin Nearest Neighbor Classification,” Advances in
Neural Information Processing Systems, 2006.

[14] A. Globerson and S. Roweis, “Metric Learning by Collapsing
Classes,” Advances in Neural Information Processing Systems, 2005.

[15] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon, “Information-
Theoretic Metric Learning,” Proc. Int’l Conf. Machine Learning,
2007.

[16] J. Freidman, J. Bentley, and A. Finkel, “An Algorithm for Finding
Best Matches in Logarithmic Expected Time,” ACM Trans. Math.
Software, vol. 3, no. 3, pp. 209-226, Sept. 1977.

[17] J. Uhlmann, “Satisfying General Proximity/Similarity Queries
with Metric Trees,” Information Processing Letters, vol. 40, pp. 175-
179, 1991.

[18] P. Jain, B. Kulis, and K. Grauman, “Fast Image Search for Learned
Metrics,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2008.

[19] G. Lanckriet, N. Cristinanini, P. Bartlett, L. Ghaoui, and M. Jordan,
“Learning the Kernel Matrix with Semidefinite Programming,”
J. Machine Learning Research, vol. 5, pp. 27-72, 2004.

[20] M. Varma and D. Ray, “Learning the Discriminative Power
Invariance Trade Off,” Proc. IEEE Int’l Conf. Computer Vision, 2007.

[21] J. Goldberger, S.T. Roweis, G.E. Hinton, and R. Salakhutdinov,
“Neighbourhood Components Analysis,” Advances in Neural
Information Processing Systems, 2004.

[22] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality Reduction
by Learning an Invariant Mapping,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 1735-1742, 2006.

[23] M. Schultz and T. Joachims, “Learning a Distance Metric from
Relative Comparisons,” Advances in Neural Information Processing
Systems, 2003.

[24] A. Frome, Y. Singer, and J. Malik, “Image Retrieval and
Classification Using Local Distance Functions,” Advances in Neural
Information Processing Systems 19, B. Scholkopf, J. Platt, and
T. Hofmann, eds., MIT Press, 2007.

[25] K. Crammer, J. Keshet, and Y. Singer, “Kernel Design Using
Boosting,” Advances in Neural Information Processing Systems, 2002.

[26] T. Hertz, A. Bar-Hillel, and D. Weinshall, “Learning a Kernel
Function for Classification with Small Training Samples,” Proc.
Int’l Conf. Machine Learning, 2006.

[27] P. Jain, T. Huynh, and K. Grauman, “Learning Discriminative
Matching Functions for Local Image Features,” technical report,
Univ. of Texas at Austin, Apr. 2007.

2156 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009

[28] A. Bosch, A. Zisserman, and X. Munoz, “Representing Shape with
a Spatial Pyramid Kernel,” Proc. Int’l Conf. Image and Video
Retrieval, 2007.

[29] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios, “BoostMap: A
Method for Efficient Approximate Similarity Rankings,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2004.

[30] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.,
chap. 10. John Wiley and Sons, Inc., 2001.

[31] S. Roweis and L. Saul, “Nonlinear Dimensionality Reduction by
Locally Linear Embedding,” Science, vol. 290, no. 5500, pp. 2323-
2326, 2000.

[32] J. Tenenbaum, V. de Silva, and J. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science,
vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.

[33] M. Badoiu, E. Demaine, M. Hajiaghayi, and P. Indyk, “Low-
Dimensional Embedding with Extra Information,” Proc. 20th
Symp. Computational Geometry, 2004.

[34] A. Torralba, R. Fergus, and Y. Weiss, “Small Codes and Large
Image Databases for Recognition,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2008.

[35] J. Beis and D. Lowe, “Shape Indexing Using Approximate
Nearest-Neighbour Search in High Dimensional Spaces,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 1997.

[36] D. Nister and H. Stewenius, “Scalable Recognition with a
Vocabulary Tree,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2006.

[37] P. Indyk and R. Motwani, “Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality,” Proc. 30th Ann.
Symp. Theory of Computing, 1998.

[38] M. Charikar, “Similarity Estimation Techniques from Rounding
Algorithms,” Proc. ACM Ann. Symp. Theory of Computing, 2002.

[39] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-
Sensitive Hashing Scheme Based on p-Stable Distributions,” Proc.
Ann. Symp. Computational Geometry, 2004.

[40] B. Georgescu, I. Shimshoni, and P. Meer, “Mean Shift Based
Clustering in High Dimensions: A Texture Classification Exam-
ple,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2003.

[41] P. Indyk and N. Thaper, “Fast Image Retrieval via Embeddings,”
Proc. Int’l Workshop Statistical and Computational Theories of Vision,
2003.

[42] K. Grauman and T. Darrell, “Pyramid Match Hashing: Sub-Linear
Time Indexing over Partial Correspondences,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2007.

[43] M. Muja and D.G. Lowe, “Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration,” Proc. Int’l Conf.
Computer Vision Theory and Applications, 2009.

[44] Nearest-Neighbor Methods in Learning and Vision: Theory and Practice,
G. Shakhnarovich, T. Darrell, and P. Indyk, eds. The MIT Press,
2006.

[45] M. Goemans and D. Williamson, “Improved Approximation
Algorithms for Maximum Cut and Satisfiability Problems Using
Semidefinite Programming,” J. ACM, vol. 42, no. 6, pp. 1115-1145,
1995.

[46] H. Ling and S. Soatto, “Proximity Distribution Kernels for
Geometric Context in Category Recognition,” Proc. IEEE Int’l
Conf. Computer Vision, 2007.

[47] K. Grauman and T. Darrell, “The Pyramid Match Kernel: Efficient
Learning with Sets of Features,” J. Machine Learning Research,
vol. 8, pp. 725-760, Apr. 2007.

[48] K. Grauman and T. Darrell, “Approximate Correspondences in
High Dimensions,” Advances in Neural Information Processing
Systems, 2007.

[49] F. Odone, A. Barla, and A. Verri, “Building Kernels from Binary
Strings for Image Matching,” IEEE Trans. Image Processing, vol. 14,
no. 2, pp. 169-180, Feb. 2005.

[50] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Cate-
gories,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2006.

[51] J. Ha, C. Rossbach, J. Davis, I. Roy, H. Ramadan, D. Porter, D.
Chen, and E. Witchel, “Improved Error Reporting for Software
That Uses Black-Box Components,” Proc. Conf. Programming
Language Design and Implementation, 2007.

[52] L. Taycher, G. Shakhnarovich, D. Demirdjian, and T. Darrell,
“Conditional Random People: Tracking Humans with CRFs and
Grid Filters,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2006.

[53] K. Mikolajczyk and C. Schmid, “Scale and Affine Invariant
Interest Point Detectors,” Int’l J. Computer Vision, vol. 60, no. 1,
pp. 63-86, Oct. 2004.

[54] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust Wide
Baseline Stereo from Maximally Stable Extremal Regions,” Proc.
British Machine Vision Conf., 2002.

[55] G. Hua, M. Brown, and S. Winder, “Discriminant Embedding for
Local Image Descriptors,” Proc. IEEE Int’l Conf. Computer Vision,
2007.

Brian Kulis received the BA degree in computer
science and mathematics from Cornell Univer-
sity in 2003 and the PhD degree in computer
science from the University of Texas in 2008. He
is currently a postdoctoral fellow in the Electrical
Engineering and Computer Science Department
at the University of California at Berkeley and the
International Computer Science Institute. His
research interests focus on machine learning,
data mining, and large-scale optimization. For

his research, he has won three best student paper awards at top-tier
conferences—two at the International Conference on Machine Learning
in 2005 and 2007 and one at the IEEE Conference on Computer Vision
and Pattern Recognition in 2008. He is also the recipient of an MCD
graduate fellowship from the University of Texas (2003-2007) and an
Award of Excellence from the College of Natural Sciences at the
University of Texas. He is a member of the IEEE.

Prateek Jain received the BTech degree in
computer science and engineering from the
Indian Institute of Technology (IIT), Kanpur. He
is currently working toward the PhD degree in
the Computer Science Department at the Uni-
versity of Texas at Austin. His research interests
are in machine learning, large-scale optimiza-
tion, and computer vision. He is a recipient of an
MCD fellowship from the University of Texas
(2005-2009) and a student scholarship award

from the International Conference on Machine Learning (ICML ’09). He
is a student member of the IEEE.

Kristen Grauman received the BA degree from
Boston College in 2001 and the SM and PhD
degrees from the Massachusetts Institute of
Technology, in the Electrical Engineering and
Computer Science Department’s Computer
Science and Artificial Intelligence Laboratory in
2003 and 2006, respectively. She is the Clare
Boothe Luce Assistant Professor in the Depart-
ment of Computer Sciences at the University of
Texas at Austin (UT Austin). She is a recipient of

a 2008 US National Science Foundation (NSF) CAREER Award, the
Microsoft Research New Faculty Fellowship, and the Frederick A.
Howes Scholar Award in computational science. Her group’s research in
computer vision and machine learning focuses on visual search and
category recognition. She is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KULIS ET AL.: FAST SIMILARITY SEARCH FOR LEARNED METRICS 2157

