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Abstract

Metric learning algorithms can provide useful distancections for a variety
of domains, and recent work has shown good accuracy for pmublvhere the
learner can access all distance constraints at once. Howewaany real appli-
cations, constraints are only available incrementallysthecessitating methods
that can perform online updates to the learned metric. EBgisinline algorithms
offer bounds on worst-case performance, but typically dopssform well in
practice as compared to their offline counterparts. We pteseew online metric
learning algorithm that updates a learned Mahalanobisitieéised on LogDet
regularization and gradient descent. We prove theoretioedt-case performance
bounds, and empirically compare the proposed method agexisting online
metric learning algorithms. To further boost the practtgadf our approach, we
develop an online locality-sensitive hashing scheme whaeals to efficient up-
dates to data structures used for fast approximate sityilsearch. We demon-
strate our algorithm on multiple datasets and show that tiperfiorms relevant
baselines.

1 Introduction

A number of recent techniques address the problem of metining, in which a distance function
between data objects is learned based on given (or infesiedlarity constraints between exam-
ples [4, 7, 11, 16, 5, 15]. Such algorithms have been apptieal tariety of real-world learning
tasks, ranging from object recognition and human body petieation [5, 9], to digit recogni-
tion [7], and software support [4] applications. Most sissfal results have relied on having access
to all constraints at the onset of the metric learning. Haveim many real applications, the desired
distance function may need to change gradually over timeld#ienal information or constraints
are received. For instance, in image search applicatiote@imternet, online click-through data
that is continually collected may impact the desired distafunction. To address this need, recent
work ononlinemetric learning algorithms attempts to handle constrahmdsare received one at a
time [13, 4]. Unfortunately, current methods suffer fromwaber of drawbacks, including speed,
bound quality, and empirical performance.

Further complicating this scenario is the fact that fastieeal methods must be in place on top

of the learned metrics for many applications dealing witigdascale databases. For example, in
image search applications, relevant images within veryelaollections must be quickly returned

to the user, and constraints and user queries may often érnimgled across time. Thus a good

online metric learner must also be able to support fast anityilsearch routines. This is problematic

since existing methods (e.g., locality-sensitive haslifidl] or kd-trees) assume a static distance
function, and are expensive to update when the underlystgmuite function changes.



The goal of this work is to make metric learning practicalreail-world learning tasks in which both
constraints and queries must be handled efficiently in aimenhanner. To that end, we first develop
an online metric learning algorithm that uses LogDet regzdgion and exact gradient descent. The
new algorithm is inspired by the metric learning algorithtmdsed in [4]; however, while the loss
bounds for the latter method are dependent on the input datdpss bounds are independent of
the sequence of constraints given to the algorithm. Furibeg, unlike the Pseudo-metric Online
Learning Algorithm (POLA) [13], another recent online tadjue, our algorithm requires no eigen-
vector computation, making it considerably faster in pcactWe further show how our algorithm
can be integrated with large-scale approximate similadgrch. We devise a method to incremen-
tally update locality-sensitive hash keys during the upslatf the metric learner, making it possible
to perform accurate sub-linear time nearest neighbor kearaver the data in an online manner.

We compare our algorithm to related existing methods usingreety of standard data sets. We
show that our method outperforms existing approaches, ael gerforms comparably to several
offline metric learning algorithms. To evaluate our apptofae indexing a large-scale database, we
include experiments with a set of 300,000 image patchespulime algorithm effectively learns to
compare patches, and our hashing construction allows atecfast retrieval for online queries.

1.1 Related Work

A number of recent techniques consider the metric learnioglpm [16, 7, 11, 4, 5]. Most work
deals with learning Mahalanobis distances in an offline nagrwhich often leads to expensive opti-
mization algorithms. The POLA algorithm [13], on the othanid, is an approach for online learning
of Mahalanobis metrics that optimizes a large-margin dbje@nd has provable regret bounds, al-
though eigenvector computation is required at each itarat enforce positive definiteness, which
can be slow in practice. The information-theoretic meteiarhing method of [4] includes an on-
line variant that avoids eigenvector decomposition. H@vgelvecause of the particular form of the
online update, positive-definiteness still must be cahgemforced, which impacts bound quality
and empirical performance, making it undesirable for both tieéioal and practical purposes. In
contrast, our proposed algorithm has strong bounds, regjaio extra work for enforcing positive
definiteness, and can be implemented efficiently. There atarier of existing online algorithms
for other machine learning problems outside of metric leeyre.g. [10, 2, 12].

Fast search methods are becoming increasingly necessamaébine learning tasks that must cope
with large databases. Locality-sensitive hashing [6] iefective technique that performs approx-
imate nearest neighbor searches in time that is sub-lingaeisize of the database. Most existing
work has considered hash functions fgy norms [3], inner product similarity [1], and other stan-
dard distances. While recent work has shown how to geneeatie tunctions for (offline) learned
Mahalanobis metrics [9], we are not aware of any existingnéque that allows incremental updates
to locality-sensitive hash keys for online database maantee, as we propose in this work.

2 OnlineMetric Learning

In this section we introduce our model for online metric teag, develop an efficient algorithm to
implement it, and prove regret bounds.

2.1 Formulation and Algorithm

As in several existing metric learning methods, we restriatselves to learning Mahalanobis
distance functiomver our input data, which is a distance function parameserby ad x d positive
definite matrixA. Givend-dimensional vectora andwv, the squared Mahalanobis distance between
them is defined as

da(u,v) = (u—v)TA(u —v).
Positive definiteness of assures that the distance function will return positivéatises. We may
equivalently view such distance functions as applying edirtransformation to the input data and
computing the squared Euclidean distance in the transibapace; this may be seen by factorizing
the matrix4A = GTG, and distributing into the (u — v) terms.

In general, one learns a Mahalanobis distance by learnagppropriate positive definite matrik
based on constraints over the distance function. Theséragris are typically distance or similarity
constraints that arise from supervised information—faragle, the distance between two points
in the same class should be “small”. In contrast to offlinerapphes, which assume all constraints



are provided up front, online algorithms assume that cairgt are received one at a time. That
is, we assume that at time stepthere exists a current distance function parameterized,;byA
constraint is received, encoded by the trifle, v, y;), wherey; is the target distance betweean
andwv, (we restrict ourselves to distance constraints, thouglratbnstraints are possible). Using
A, we firstpredictthe distance), = d 4, (u, v¢) using our current distance function, and incur a
loss (g, y:). Then weupdateour matrix fromA; to A;;. The goal is to minimize the sum of
the losses over all time steps, i.€.4 = >, ¢(y:,y:). One common choice is the squared loss:

(e, y¢) = =(9: — y¢)2. We also consider a variant of the model where the input isaalqiple
(ug, ve, yi, b 2) whereb, = 1 if we require that the distance betwegpandv; be less than or equal
to y¢, andb, = —1 if we require that the distance betwegpandv; be greater than or equal tg.

In that case, the corresponding loss functiof(s, y¢, b;) = max(0, $b¢(j: — y¢))*.

A typical approach [10, 4, 13] for the above given online théag problem is to solve fod,;; by
minimizing a regularized loss at each step:

App1 = argminD(A, Ap) +nl(da(ug, ve), yt), (2.1)
=0

whereD(A, A;) is a regularization function angl > 0 is the regularization parameter. As in [4],
we use the.ogDetdivergenceD, (A, A;) as the regularization function. It is defined over positive
definite matrices and is given by,4(A, A;) = tr(AA; ") — logdet(AA; ') — d. This divergence
has previously been shown to be useful in the context of mégerning [4]. It has a number
of desirable properties for metric learning, includinglegavariance, automatic enforcement of
positive definiteness, and a maximum-likelihood intergtien.

Existing approaches solve fod;,; by approximating the gradient of the loss function, i.e.
0'(da(ut,v:),y:) is approximated by’ (d 4, (ut, v:), y¢) [10, 13, 4]. While for some regulariza-
tion functions (e.g. Frobenius divergence, von-Neumanardence) such a scheme works out well,
for LogDet regularization it can lead to non-definite matsdor which the regularization function
is not even defined. This results in a scheme that has to duapedqularization parameter in order
to maintain positive definiteness [4].

In contrast, our algorithm proceeds byactlysolving for the updated parametets,; that mini-
mize (2.1). Since we use the exact gradient, our analysid@dgome more involved; however, the
resulting algorithm will have several advantages overtemgsnethods for online metric learning.
By setting gradient of (2.1) with LogDet regularization t® bero w.r.t.A:

Al = A7 0@ - w)ze]

wherez; = u; — v, andy = da, ., (uy,vy) = thAtJrlzt- Using straightforward algebra and the
Sherman-Morrison inverse formula, we can show that theltiegusolution to the minimization
of (2.1) is:

(g — yo) Aezezi Ay
L+ 07— y)z] Arze
Itis notimmediately clear that this update can be applietes; is a function of4; ;. However, by
multiplying the update in (2.2) on the left /" and on the right by, and noting thag, = 27 A, z,,
we obtain the following:

A = Ay —

(2.2)

Ut
—d — TA = - 2.3
7 Apr (U, v1) = 2 Az 1+ 0y — ye)e #2)

(2.3) is a quadratic equation i and can be solved as

= nyede — 1+ v/ (qyede — 1) + 4}
' 29

We justify ignoring the other solution to the quadratic dipralater in the proof of Theorem 2.1.

We can solve directly fog using the above given formula, and then plug this into theatgp@.2).

For the case when the input is a quadruple and the loss fumistihe squared hinge loss, we only
perform the update (2.2) if the new constraint is violated.

(2.4)

It is possible to show that the resulting matrlx,; is positive definite; the proof appears below in
Theorem 2.1.



Theorem 2.1. Suppose!, is positive-definite, theA, ., given by the LEGO updat@.2)is positive
definite.

Proof. We prove the theorem using mathematical induction. The t@seholds as the initial matrix
Ay = 1T is positive definite.

Now we show thatd;; is positive-definite(p.d.) ifd; is p.s.d. IfA; is a p.d. matrix therj =
zT A,z > 0forall z. Now,

\/(nyt@)t = 1) +4ngf > [nyege — 11,

asn > 0. Thus, using (2.4)y = 2! A;112; > 0 for all z,. Hence,A; is p.d. This also justifies
our rejection of the other solution to the quadratic equetih3), since otherwisg < 0, implying
the resultingA;; would be indefinite. O

The fact that this update maintains positive definiteneakisy advantage of our method over exist-
ing methods; POLA, for example, requires projection to tbsitive semidefinite cone via an eigen-
decomposition. The final loss bound in [4] depends on thelaggation parameter; from each
iteration and is in turn dependent on the sequence of camtstran undesirable property for online
algorithms. In contrast, by minimizing the functighwe designate above in (2.1), our algorithm’s
updates automatically maintain positive definitenesss means that the regularization parameter
need not be changed according to the current constrainthem@sulting bounds (Section 2.2) and
empirical performance are notably stronger.

We refer to our algorithm as LogDet Exact Gradient Online®@@®), and use this name throughout
to distinguish it from POLA [13] (which uses a Frobenius riegization) and the Information The-
oretic Metric Learning (ITML)-Online algorithm [4] (whichses an approximation to the gradient).

2.2 Analyss
We now analyze the regret bounds for our online metric legraigorithm.

To evaluate the online learner’s quality, we want to complaedoss of the online algorithm (which
has access to one constraint at a time in sequence) to thefltssbest possible offline algorithm

(which has access to all constraints at once).d}et d a~(uy, v¢) be the learned distance between

pointsu, andv, with a fixed positive definite matrixd*, and letL - = 3, é(dt,yt) be the loss
suffered over alt time steps. Note that the logs,- is with respect to a single matrizx*, whereas
L 4 (Section 2.1) is with respect to a matrix that is being updl&eery time step. Lel* be the
optimal offline solution, i.e. it minimizes total loss incad (L 4+). The goal is to demonstrate that
the loss of the online algorithth, is competitive with the loss of any offline algorithm. To tleaid,
we now show thaf. 4 < ¢; L 4+ + co, Wherec; andc, are constants.

To compute the regret bound, we present a lemma (Lemma 249und the loss at each step
incurred by the algorithm in terms of the loss incurred bydpémal offline solution. In the result
below, we assume that the length of the data points is bourlded < R for all u, i.e. t(X;) < R

for all t. Also, let the optimald* to be0 < A* < I. Thusy, € [0, R], if ay, is provided out of this
range than we can just clip it to be between either R. We first present a few useful lemmas that
will be used for proving Lemma 2.4.

Lemma 2.2. At each step of the LEGO algorithm,
R R 1
2

+4/—+

y < —.
Y= 2 0

Proof. Using (2.4),

nye — 19+ v/ (nye — 1/90)% + 41
2n '

Now §; > 0, > 0 andy; < R. Thus, simplifying we get:

2 4 n

g:

y <



Hence proved. O
Lemma 2.3. At each step of the LEGO algorithm,

dy _ my*  dy—y) -1
dye  1+ny*’  dy L+ny?
Proof. Using (2.3),
L7 — yo)ie = %
Thus,
(@ _ 1) __1l4
dy: y? dy:
Simplifying we get:
dy _ny°
—= = . 2.5
dy:  1+ny? (2:9)
By subtracting 1 from both the sides of (2.5) and simplifyihg resulting expression, we get:
dy—y) -1
dy: L+ny*
Hence proved. O

Lemma 2.4. At each step,

1 N 1 * *
§at(yt — )’ — §ﬁt(dA* (w,v1) — yt)? < Dig(A*, Ap) — Dyg(A*, Aryr),
where0 < o < u =, B¢ = n, and A* is the optimal offline solution.
1+n<§+\/¥+%)
Proof.

det(At) _ _ %
m) Hr((A7 = A )AY).

Sincelog(det(A)) = tr(log(A)) and t{AB) = tr(BA), we have that
Dig(A*, Ay) — Dia(A*, A1) = tr(log(Ar) —log(Arg)) + (A7 — A )AY)

tr(log(As A ) — n(f — ya)tr(X, A7)
tr(log(I + n(y — y:) A+ X)) — nlar — yo)tr(A* Xy)
log(1 + ne(y — ye)gt) — m (Y — ye)r,

Dia(A*, Ay) — Dia(A*, Agy1) = log <

wherer = tr(A*X;).
Proving the lemma amounts to showing that:
Dia(A*, At) — Dia(A*, Aps1) = log(1 +ne(§ — y)Ge) — ne(§ — ye)r
> —ap(be —y)® — %51&(7” —ye)?,
(2.6)

N | =

for some positive constantg and,. Consider the function

1 . 1
F(r)= 50%(.% —ye)? — 3 (
Equation 2.6 is equivalent t6'(r) < 0,Vr. It can be seen thaF(r) is maximized whenr =
Yt + 5-(y — y). Substituting for in F(r) and simplifying, we get:

Be(r — ye)* —log(1 +n(§ — ye)de) + n(y — yo)r-

1 . 772 B B R B
(e — ye)? + Z_Bt(y —y)? —log(L+n(y — yo)3e) + m(y — ye)ye-



Hence, we need to prove that

2

1 _ _ . _
Gy:) = §at(yt — )’ + 277—@@ —y)? —log(L+n(y — ye)ie) + e (Y — ye)ye < 0,

for all y;.

Using Lemma 2.3,

dG . 0 (§ —yt) 1 i _ Ny
—— = —ou(fje — ) — g + — — 0y — ) — —.
dy: (g =) Be L+ny?  1+n(y — ye)0: 1 +ny? 17 = v) 1+ ny?
1 _z
Now TGE = Therefore,
dG R G —v)  ny—y) )
— = —oq (e — ) — = - +0(7 — ).
dyt (g~ 9e) B 1+ny* 1+ my? @~ ve)
Now let 3, = n > 0. Hence,
dG . _
d_yt = —a(Jr — ye) + (Y — yr)-

Now it can be seen that §; = §: = y+ = y. Therefore, the optimum fo& (y;) is achieved at
yt = ¥ = ¥ and the optimal value i& = 0.

Now consider:
d*G n
— = — .
dy7 ' 145

Hencey; = y is maxima forG iff,

n
< 1
ST
for all . Using Lemma 2.2y; = 7 is maxima forG if
Qi < n 3
1+n(§+,/%2+%)
AsG = 0aty; =y, for 5, = nanda < i >, the lemma holds. O
1+n(%+ RTZ+%,>
Theorem 2.5.
R |R2 1\’ 1 (R R 1\?
La<(l4nl5+4/—F—+=) JLa+{=+ |5 T/t =] |Du(A", Ao),
2 4 n n 2 4 n

whereL, = >, ¢(y:,v¢) is the loss incurred by the series of matricés generated by Equa-
tion (2.4), Ao > 0 is the initial matrix, andA* is the optimal offline solution.
Proof. The bound is obtained by summing the loss at each step usimgiae?.4:

> (%at(yt —y)? — %51&(6514* (ue,vy) — yt)2) <> (Dld(A*,At) - Dld(A*,AHl))-

The result follows by plugging in the appropriate and 5;, and observing that the right-hand side
telescopes t®;4(A*, Ag) — Dyja(A*, Aiv1) < Dig(A*, Ag) sinceDq(A*, Ary1) > 0. O

For the squared hinge 10£§);, y:, b;) = max (0, b;(9; — y;))?, the corresponding algorithm has the
same bound.

The regularization parameter affects the tradeoff betwegnand D;;(A*, Ap): asn gets larger,
the coefficient ofL 4- grows while the coefficient oD,;;(A*, Ap) shrinks. In most scenarios,
R is small; for example, in the case whdb = 2 andn = 1, then the bound i, <

(4 + V2)La- + 2(4 + V2)Dya(A*, Ap). Furthermore, in the case when there exists an offline
solution with zero error, i.e 4~ = 0, then with a sufficiently large regularization parametes, w



know thatL 4 < 2R?D;4(A*, Ap). This bound is analogous to the bound proven in Theorem 1 of
the POLA method [13]. Note, however, that our bound is muchenfiavorable to scaling of the op-
timal solutionA*, since the bound of POLA has|jal*||%. term while our bound useB;;(A*, A):

if we scale the optimal solution by then theD;4(A*, Ao) term will scale byO(c), whereas| A*||%

will scale by O(c?). Similarly, our bound is tighter than that provided by theviI-Online algo-
rithm since, in the ITML-Online algorithm, the regulariiat parameter), for stept is dependent

on the input data. An adversary can always provide an i(putyv,, y;) So that the regularization
parameter has to be decreased arbitrarily; that is, thetoeadintain positive defininteness for each
update can prevent ITML-Online from making progress towand optimal metric.

In summary, we have proven a regret bound for the proposedd.BI@orithm, an online metric
learning algorithm based on LogDet regularization and igrgddescent. Our algorithm automati-
cally enforces positive definiteness every iteration arsihigle to implement. The bound is compa-
rable to POLA's bound but is more favorable to scaling, argtrignger than ITML-Online’s bound.

3 Fast Online Similarity Searches

In many applications, metric learning is used in conjuntiidth nearest-neighbor searching, and
data structures to facilitate such searches are esseRtalonline metric learning to be practical

for large-scale retrieval applications, we must be abldfioiently index the data as updates to the
metric are performed. This poses a problem for most fastaiityi searching algorithms, since each
update to the online algorithm would require a costly updatbeir data structures.

Our goal is to avoid expensive naive updates, where all datibems are re-inserted into the search
structure. We emplojocality-sensitive hashintp enable fast queries; but rather than re-hash all
database examples every time an online constraint alterm#tric, we show how to incorporate
a second level of hashing that determines which hash bitshereging during the metric learning
updates. This allows us to avoid costly exhaustive updatgbe hash keys, though occasional
updating is required after substantial changes to the oatei accumulated.

3.1 Background: Locality-Sensitive Hashing

Locality-sensitive hashing (LSH) [6, 1] produces a binaagh keyH (u) = [h1(u)ha(w)...hy ()]

for every data point. Each individual bit;(u) is obtained by applying the locality sensitive hash
function h; to inputu. To allow sub-linear time approximate similarity search &similarity
function ‘sim’, a locality-sensitive hash function mustisty the following property:Pr[h;(u) =
h;(v)] = sim(u, v), where ‘sim’ returns values between 0 and 1. This means teantbre similar
examples are, the more likely they are to collide in the hablet

A LSH function when ‘sim’ is the inner product was developedl], in which a hash bit is the sign

of an input’s inner product with a random hyperplane. For BMahobis distances, the similarity
function of interest is siffu, v) = u” Av. The hash function in [1] was extended to accommodate
a Mahalanobis similarity function in [9]4 can be decomposed &8'G, and the similarity function

is then equivalentlyt” v, wherea = Gu andv = Gv. Hence, a valid LSH function for” Av is:

o a(10) = 1, if r"Gu >0
A T 0, otherwise,

wherer is the normal to arandom hyperplane. To perform sub-linea hearest neighbor searches,
a hash key is produced for alldata points in our database. Given a query, its hash keyisefor
and then, an appropriate data structure can be used to tgxtteatial nearest neighbors (see [6, 1]
for details). Typically, the methods search oiiyn'/(1+€)) of the data points, where > 0, to
retrieve the(1 + €)-nearest neighbors with high probability.

(3.1)

3.2 Online Hashing Updates

The approach described thus far is not immediately amenatdaline updates. We can imagine
producing a series of LSH functions., 4, ..., hr, 4, and storing the corresponding hash keys for
each data point in our database. However, the hash funa®gien in (3.1) are dependent on the
Mahalanobis distance; when we update our matrjxo A, 1, the corresponding hash functions,
parameterized by+;, must also change. To update all hash keys in the databadd vemuire
O(nd) time, which may be prohibitive. In the following we proposmare efficient approach.



_ T
Recall the update fod: A, = A; — %, which we will write asA4; 1 = A; +

ﬁtAtZtZ?At, Whereﬁt = —’I](g — yt)/(l + ﬁ(g — yt)yAt) Let G?Gt = A;. ThenAt+1 =
GT(I + 3:Giz2f GT)Gy. The square-root of + 3;Giz:2l GT is I + ;G22I GT, where
ar = (\V/1+ izl Arzi—1)/(2F Asz). AsaresultG, 1 = Gi+a,Gyz21 A, The corresponding
update to (3.1) is to find the sign of

rTGtHcc =rTGu+ oztrTGtztthAtu. (3.2)

Suppose that the hash functions have been updated in fulbraé gime stept; in the past.
Now at timet¢, we want to determine which hash bits have flipped sihgeor more pre-
cisely, which examples’ product with somé G, has changed from positive to negative, or vice
versa. This amounts to determining all bits such that 8§, w) # signr?G,u), or equiv-
alently, (r"Gy,u)(rTGyu) < 0. Expanding the update given in (3.2), we can wiiteG,u as
rTGyu+ ZZ;; arrTGyzez] Agu. Therefore, finding the bits that have changed sign is eguiva

lent to finding allu such that(r? Gy, u)? + (rT Gy, u) Zz;il ar?Gozez] Apu | < 0. We can

use a second level of locality-sensitive hashingapproximatelyfind all suchu. Define a vec-
toru = [(r7Gy,u)?; (rT Gy, u)u] and a “query’q = [—1; — Z;:; aerT Ayzezl' Gy]. Then the

bits that have changed sign can be approximately identifiefinding all examples: such that
g"a > 0. In other words, we look for aliz that have a large inner product wigh which translates
the problem to a similarity search problem. This may be sblgproximately using the locality-
sensitive hashing scheme givenin [1] for inner productlsirity. Note that findingz for eachr can

be computationally expensive, so we seatidior only a randomly selected subset of the vectars

In summary, when performing online metric learning updatestead of updating all the hash keys
at every step (which cost3(nd)), we delay updating the hash keys and instead determinexppr
mately which bits have changed in the stored entries in thk table since the last update. When we
have a nearest-neighbor query, we can quickly determinehwdits have changed, and then use this
information to find a query’s approximate nearest neighbeiisg the current metric. Once many of
the bits have changed, we perform a full update to our hasttifurs.

Finally, we note that the above can be extended to the caseewbeputations are done in kernel
space.

4 Experimental Results

In this section we evaluate the proposed algorithm (LEG@) ewariety of data sets, and examine
both its online metric learning accuracy as well as the ¢uafiits online similarity search updates.
As baselines, we consider the most relevant techniquestfrefiterature: the online metric learners
POLA [13] and ITML-Online [4]. We also evaluate a baselin8iné metric learner associated with
our method. For all metric learners, we gauge improvemedsive to the original (non-learned)
Euclidean distance, and our classification error is medswith the k-nearest neighbor algorithm.

First we consider the same collection of UCI data sets usgt].ifror each data set, we provide the
online algorithms with 10,000 randomly-selected constsaiand generate their target distances as
in [4]—for same-class pairs, the target distance is set tgjoal to the 5th percentile of all distances
in the data, while for different-class pairs, the 95th patite is used. To tune the regularization
parameter for POLA and LEGO, we apply a pre-training phase using 1,@0Gtraints. (Thisis not
required for ITML-Online, which automatically sets the uégyization parameter at each iteration
to guarantee positive definiteness). The final metfig)(obtained by each online algorithm is used
for testing (" is the total number of time-steps). The left plot of Figuréhbws thek-nn error rates
for all five data sets. LEGO outperforms the Euclidean basels well as the other online learners,
and even approaches the accuracy of the offline method (kéer [ddditional comparable offline
learning results using [7, 15]). LEGO and ITML-Online hawparable running times. However,
our approach has a significant speed advantage over POLAesa thata sets: on average, learning
with LEGO is 16.6 times faster, most likely due to the extrajpction step required by POLA.

Next we evaluate our approach on a handwritten digit clasgifin task, reproducing the experiment
used to test POLA in [13]. We use the same settings given irptig@er. Using the MNIST data set,
we pose a binary classification problem between each paigit$ ¢45 problemsin all). The training
and test sets consist of 10,000 examples each. For eacleprobl000 constraints are chosen and
the final metric obtained is used for testing. The center pidtigure 1 compares the test error
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Figure 1:Comparison with existing online metric learning methaodsft: On the UCI data sets, our method
(LEGO) outperforms both the Euclidean distance baselineedsas existing metric learning methods, and
even approaches the accuracy of the offline algorit@enter: Comparison of errors for LEGO and POLA
on 45 binary classification problems using the MNIST dataGGEmatches or outperforms POLA on 33 of the
45 total problemsRight: On the Photo Tourism data, our online algorithm significaotitperforms thd.,
baseline and ITML-Online, does well relative to POLA, andmgmatches the accuracy of the offline method.

between POLA and LEGO. Note that LEGO beats or matches PQestserror in 33/45 (73.33%)
of the classification problems. Based on the additionallreeseprovided in [13], this indicates that
our approach also fares well compared to other offline mktamers on this data set.

We next consider a set of image patches from the Photo Touisiact [14], where user photos
from Flickr are used to generate 3-d reconstructions ofousritourist landmarks. Forming the
reconstructions requires solving for the correspondeateden local patches from multiple images
of the same scene. We use the publicly available data setdhgdins about 300,000 total patches
from images of three landmarksEach patch has a dimensionality of 4096, so for efficiency we
apply all algorithms in kernel space, and use a linear kerfidle goal is to learn a metric that
measures the distance between image patches bettekthaa that patches of the same 3-d scene
point will be matched together, and (ideally) others wilt.n®ince the database is large, we can also
use it to demonstrate our online hash table updates. Foltpj@], we add random jitter (scaling,
rotations, shifts) to all patches, and generate 50,00hmatastraints (50% matching and 50% non-
matching patches) from a mix of the Trevi and Halfdome imayés test with 100,000 patch pairs
from the Notre Dame portion of the data set, and measure acgwith precision and recall.

The right plot of Figure 1 shows that LEGO and POLA are ablestrt a distance function that
significantly outperforms the baseline squared Euclidéstanice. However, LEGO is more accurate
than POLA, and again nearly matches the performance of flieeofetric learning algorithm. On
the other hand, the ITML-Online algorithm does not improeydnd the baseline. We attribute
the poor accuracy of ITML-Online to its need to continualtijuest the regularization parameter to
maintain positive definiteness; in practice, this ofterdteto significant drops in the regularization
parameter, which prevents the method from improving overEhclidean baseline. In terms of
training time, on this data LEGO is 1.42 times faster than RQdn average over 10 runs).

Finally, we present results using our online metric leagratgorithm together with our online hash
table updates described in Section 3.2 for the Photo Toudgta. For our first experiment, we
provide each method with 50,000 patch constraints, andgbarch for nearest neighbors for 10,000
test points sampled from the Notre Dame images. Figure 2allef) shows the recall as a function
of the number of patches retrieved for four variations: LE®ith a linear scan, LEGO with our
LSH updates, thd.» baseline with a linear scan, arig with our LSH updates. The results show
that the accuracy achieved by our LEGO+LSH algorithm is caraple to the LEGO+linear scan
(and similarly,L,+LSH is comparable td.o+linear scan), thus validating the effectiveness of our
online hashing scheme. Moreover, LEGO+LSH needs to seanghl0% of the database, which
translates to an approximate speedup factor of 4.7 oveirtbarlscan for this data set.

Next we show that LEGO+LSH performs accurate and efficietntesaals in the case where con-
straints and queries are interleaved in any order. Suchresods useful in many applications: for
example, an image retrieval system such as Flickr contipaatjuires new image tags from users
(which could be mapped to similarity constraints), but malsb continually support intermittent
user queries. For the Photo Tourism setting, it would beulsefpractice to allow new constraints
indicating true-match patch pairs to stream in while userdinually add photos that should partic-

http://phototour.cs.washington.edu/patches/defeuit.
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Figure 2:Results with online hashing updates. The left plot showsehall value for increasing numbers of
nearest neighbors retrieved. ‘LEGO LSH’ denotes LEGO rod#drning in conjunction with online searches
using our LSH updates, ‘LEGO Linear’ denotes LEGO learnirithwnear scan searched.. denotes the
baseline Euclidean distance. The right plot shows the geeracall values for all methods at different time
instances as more queries are made and more constraintidad ©ur online similarity search updates make
it possible to efficiently interleave online learning ancégung. See text for details.

ipate in new 3-d reconstructions with the improved matchadise functions. To experiment with
this scenario, we randomly mix online additions of 50,000staaints with 10,000 queries, and mea-
sure performance by the recall value for 300 retrieved rs¢amgghbor examples. We recompute the
hash-bits for all database examples if we detect changesiia than 10% of the database examples.
Figure 2 (right plot) compares the average recall value &fous methods after each query. As
expected, as more constraints are provided, the LEGO-lzasrlacies all improve (in contrast to
the staticL, baseline, as seen by the straight line in the plot). Our ntedlthieves similar accuracy
to both the linear scan method (LEGO Linear) as well as theeneSH method where the hash
table is fully recomputed after every constraint updateGENaive LSH). The curves stack up
appropriately given the levels of approximation: LEGO langields the upper bound in terms of
accuracy, LEGO Naive LSH with its exhaustive updates ishéljgbehind that, followed by our
LEGO LSH with its partial and dynamic updates. In reward fds tminor accuracy loss, however,
our method provides a speedup factor of 3.8 over the naive W3tate scheme. (In this case the
naive LSH scheme is actually slower than a linear scan, aatinqgthe hash tables after every update
incurs a large overhead cost.) For larger data sets, we qga@teaven larger speed improvements.

Conclusions. We have developed an online metric learning algorithm togyetvith a method to
perform online updates to fast similarity search structuaed have demonstrated their applicability
and advantages on a variety of data sets. We have prover begneds for our online learner that
offer improved reliability over state-of-the-art methadsterms of regret bounds, and empirical
performance. A disadvantage of our algorithm is that the [p8kameters, e.g.and the number of
hash-bits, need to be selected manually, and may depenc: dimah application. For future work,
we hope to tune the LSH parameters automatically using aetdékgoretical analysis of our hash
key updates in conjunction with the relevant statisticdhefdnline similarity search task at hand.
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