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ABSTRACTGraph lustering (also alled graph partitioning) | lus-tering the nodes of a graph | is an important problem indiverse data mining appliations. Traditional approahesinvolve optimization of graph lustering objetives suh asnormalized ut or ratio assoiation; spetral methods arewidely used for these objetives, but they require eigen-vetor omputation whih an be slow. Reently, graphlustering with a general ut objetive has been shown tobe mathematially equivalent to an appropriate weightedkernel k -means objetive funtion. In this paper, we ex-ploit this equivalene to develop a very fast multilevel al-gorithm for graph lustering. Multilevel approahes involveoarsening, initial partitioning and re�nement phases, all ofwhih may be speialized to di�erent graph lustering ob-jetives. Unlike existing multilevel lustering approahes,suh as METIS, our algorithm does not onstrain the lus-ter sizes to be nearly equal. Our approah gives a theoretialguarantee that the re�nement step dereases the graph utobjetive under onsideration. Experiments show that weahieve better �nal objetive funtion values as ompared toa state-of-the-art spetral lustering algorithm: on a seriesof benhmark test graphs with up to thirty thousand nodesand one million edges, our algorithm ahieves lower normal-ized ut values in 67% of our experiments and higher ra-tio assoiation values in 100% of our experiments. Further-more, on large graphs, our algorithm is signi�antly fasterthan spetral methods. Finally, our algorithm requires farless memory than spetral methods; we luster a 1.2 mil-lion node movie network into 5000 lusters, whih due tomemory requirements annot be done diretly with spetralmethods.
Categories and Subject DescriptorsG.1.8.1 [Numerial Analysis℄: Spetral Methods; H.3.3.a[Information Searh and Retrieval℄: Clustering; I.5.3.a[Pattern Reognition℄: Clustering Algorithms
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

General TermsAlgorithms, Experimentation
KeywordsGraph Clustering, Kernel Methods, Multilevel Methods, Spe-tral Clustering
1. INTRODUCTIONGraph lustering (also alled graph partitioning) is an im-portant problem in many domains. Ciruit partitioning,VLSI design, task sheduling, bioinformatis, soial networkanalysis and a host of other problems all rely on eÆient ande�etive graph lustering algorithms. In many data miningappliations, pairwise similarities between data objets anbe modeled as a graph, and the subsequent problem of datalustering an be viewed as a graph lustering problem.The problem of graph lustering has been studied fordeades, and a number of di�erent approahes have beenproposed. Spetral methods have been widely used for graphlustering [2, 6, 9℄. These algorithms use the eigenvetors ofa graph aÆnity matrix, or a matrix derived from the aÆn-ity matrix, to partition the graph. Various spetral algo-rithms have been developed for a number of di�erent obje-tive funtions, suh as normalized ut [9℄ and ratio ut [2℄.Furthermore, extensive researh has been done on spetralpostproessing: going from the eigenvetor matrix to a dis-rete lustering [4, 10℄.It was reently shown that a wide lass of graph lus-tering objetives, inluding ratio ut, ratio assoiation, theKernighan-Lin objetive and normalized ut, an all be viewedas speial ases of the weighted kernel k -means objetivefuntion [3, 4℄. In addition to unifying several di�erent graphlustering objetives, inluding a number of spetral lus-tering objetives, this result implies that a simple weightedkernel k -means algorithm an be used to optimize graphlustering objetives. The basi kernel k -means algorithm,however, relies heavily on e�etive luster initialization toahieve good results, and an often yield poor results.In this paper, we develop a multilevel algorithm for graphlustering that uses weighted kernel k -means as the re�ne-ment algorithm. Multilevel methods have been used exten-sively for graph lustering with the Kernighan-Lin obje-tive, whih attempts to minimize the ut in the graph whilemaintaining equal-sized lusters [1, 7, 8℄. In multilevel al-gorithms, the graph is repeatedly oarsened level by leveluntil only a small number of nodes are left. Then, an ini-



Name Objetive FuntionRatio Assoiation maximizeV1;:::;Vk Pk=1 links(V;V)jVjRatio Cut minimizeV1;:::;Vk Pk=1 links(V;VnV)jVjNormalized Cut minimizeV1;:::;Vk Pk=1 links(V;VnV)degree(V)Table 1: Examples of graph lustering objetives.Note that Normalized Assoiation = k� NormalizedCut.tial lustering on this small graph is performed. Finally, thegraph is unoarsened level by level, and at eah level, thelustering from the previous level is re�ned using the re�ne-ment algorithm. This multilevel strategy results in a veryfast and e�etive graph lustering algorithm. METIS [8℄ isperhaps the most popular multilevel algorithm, and is sig-ni�antly faster than spetral methods on very large graphswhen equally sized lusters are desired.However, all previous multilevel algorithms, suh as METIS,su�er from the serious drawbak of restriting lusters to beof equal size. The algorithm presented in this paper removesthis restrition: instead of a Kernighan-Lin algorithm for there�nement phase, our algorithm employs weighted kernel k -means.We present experimental results on a number of test graphsto illustrate the advantage of our approah. We show thatour algorithm is signi�antly faster than eigenvetor om-putation, a neessary step for spetral lustering methods,on large graphs. We also demonstrate that our algorithmoutperforms a state-of-the-art spetral lustering algorithmin terms of quality, as measured by the graph objetive fun-tion values. On our benhmark test graphs of varying sizes,the �nal objetive funtion values of the multilevel algorithmare better than the spetral algorithm in 100% of runs forratio assoiation, and 67% of runs for normalized ut. Wealso present results on data arising from real-life data min-ing appliations. We luster the 1.2 million node IMDBmovie network into 5000 lusters. Running a spetral algo-rithm diretly on this data set would require storage of 5000eigenvetors, whih is prohibitive.
2. GRAPH CLUSTERINGWe �rst introdue a number di�erent graph lustering ob-jetives. As we will see later, eah of the following objetivesmay be expressed as speial ases of the weighted kernel k -means objetive funtion, whih will motivate our use ofweighted kernel k -means as the algorithm used in the re-�nement phase.For data given as a graph, a number of di�erent objetiveshave been proposed for the graph lustering problem. Weare given a graphG = (V; E ; A), onsisting of a set of vertiesV and a set of edges E suh that an edge between two vertiesrepresents their similarity. The aÆnity matrix A is jVj� jVjwhose entries represent the weights of the edges (an entry ofA is 0 if there is no edge between the orresponding verties).We denote links(A;B) = Pi2A;j2BAij ; that is, the sumof the weights of edges from one luster to the other. Letdegree(A) = links(A;V), the links to all verties from nodesin A.A list of some of the most ommon graph lustering obje-
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Figure 1: Overview of the multilevel algorithm (fork = 2).tives is presented in Table 1. The Kernighan-Lin objetive,another ommon objetive funtion, is the same as ratio utexept that lusters are additionally onstrained to be ofequal size.For ratio assoiation, ratio ut and normalized ut, themost ommon approah for optimization has been to use aspetral algorithm. Suh an algorithm is derived by relaxingthe above objetives so that a global solution to the relaxedobjetive may be found by omputing eigenvetors of an ap-propriate matrix. One these eigenvetors are omputed,a postproessing step derives a disrete lustering from theeigenvetors. See the referenes [2, 9, 10℄ for further detailson the spetral algorithms assoiated with eah of these ob-jetives.For the Kernighan-Lin objetive, the most suessful ap-proah for optimizing the objetive has been to use a mul-tilevel algorithm.
3. THE MULTILEVEL APPROACHIn this setion, we develop a new, general algorithm forgraph lustering based on multilevel methods. The multi-level approah has been made popular by METIS [8℄, thougha number of multilevel lustering algorithms have been stud-ied, dating bak to [1, 7℄. Our algorithm will di�er from pre-vious approahes in that it works for a wide lass of graphlustering objetives, and that all three phases of the algo-rithm an be speialized for eah graph lustering objetive.Below, we desribe eah phase of the algorithm.We assume that we are given an input graph, denotedby G0 = (V0; E0; A0), as well as the number of partitionsrequested, k. See Figure 1 for a graphial overview of themultilevel approah.
3.1 Coarsening PhaseGiven the initial graph G0, the graph is repeatedly trans-formed into smaller and smaller graphs G1, G2, :::; Gm suhthat jV0j > jV1j > ::: > jVmj. To oarsen a graph from Gi toGi+1, a number of di�erent tehniques may be used. In gen-eral, sets of nodes in Gi are ombined to form supernodesin Gi+1. When ombining a set of nodes into supernodes,the edge weights between two supernodes in Gi+1 are takento be the sum of the edge weights between the nodes in Giomprising the supernodes.



Our oarsening approah works as follows: given a graph,start with all nodes unmarked. Visit eah vertex in a randomorder. For eah unmarked vertex x, if all neighbors of x havebeen marked, mark x and proeed to the next unmarkedvertex. On the other hand, if x has an unmarked neighbor,then merge x with the unmarked vertex y that maximizese(x; y)w(x) + e(x; y)w(y) ; (1)where e(x; y) orresponds to the edge weight between ver-ties x and y and w(x) is the weight of vertex x. Then markboth x and y. One all verties are marked, the oarseningfor this level is ompleted.As we will see when disussing the onnetion betweengraph lustering and weighted kernel k -means, di�erent graphlustering objetives indue di�erent vertex weights. For ex-ample, in normalized ut, the weight of a vertex is its degree,and (1) redues to the normalized ut between x and y. Forratio assoiation, (1) simpli�es to the heaviest edge riterionof METIS, sine all verties have unit weight.
3.2 Initial Clustering PhaseEventually, the graph is oarsened to the point where veryfew nodes remain in the graph. We speify a parameter in-diating how small we want the oarsest graph to be; in ourexperiments, we stop oarsening when the graph has lessthan 20k nodes, where k is the number of desired lusters.At this point, we perform an initial partitioning by luster-ing the oarsest graph.One way to obtain an initial partitioning is to use theregion growing algorithm of METIS [8℄. However, this ap-proah is inadequate for our purposes sine it generates lus-ters of equal size. We have found the best method for ini-tialization to be a spetral algorithm. We use the spe-tral algorithm of Yu and Shi [10℄, whih we generalize towork with arbitrary weights [4℄. Thus our initial luster-ing is \ustomized" for di�erent graph lustering objetives.Sine the oarsest graph is signi�antly smaller than the in-put graph, spetral methods are adequate in terms of speed.We �nd the spetral methods to yield the best quality of re-sults, though they are somewhat less eÆient than the regiongrowing algorithm. Hene, when eÆieny is a onern, theregion growing algorithm may be used instead.
3.3 Refinement PhaseThe �nal phase of the algorithm is the re�nement phase.Given a graph Gi, we form the graph Gi�1 (Gi�1 is thesame graph used in level i � 1 in the oarsening phase).We extend the lustering from Gi to Gi�1 as follows: ifa supernode is in a luster , then all nodes in Gi formedfrom that supernode are in luster . This yields an initiallustering for the graph, whih is then improved using are�nement algorithm. Note that we also run the re�nementalgorithm on the oarsest graph.The algorithm terminates after the re�nement algorithmis run on the original graph G0. Sine we have a good ini-tial lustering at eah level, the re�nement algorithm oftenonverges very quikly. Thus, this approah is extremelyeÆient.At eah re�nement step, our algorithm uses an approahinspired by the reently-shown theoretial onnetion be-tween kernel k -means and spetral lustering [4℄. In [4℄, weproved that eah of the graph lustering objetives given

Algorithm 1: Re�nement Algorithm.Weighted Kernel kmeans(K, k, w, tmax,f�(0) gk=1, f�gk=1)Input: K: kernel matrix, k: number of lusters,w: weights for eah point, tmax: optional maxi-mum number of iterations, f�(0) gk=1: optional ini-tial lusteringOutput: f�gk=1: �nal lustering of the points1. If no initial lustering is given, initialize the klusters �(0)1 ; :::; �(0)k randomly. Set t = 0.2. For eah row i ofK and every luster , omputed(i;m) = Kii � 2Pj2�(t) wjKijPj2�(t) wj+Pj;l2�(t) wjwlKjl(Pj2�(t) wj)2 :3. Find �(i) = argmind(i;m), resolving tiesarbitrarily. Compute the updated lusters as�(t+1) = fi : �(i) = g:4. If not onverged or tmax > t, set t = t + 1and go to Step 3; Otherwise, stop and output �nallusters f�(t+1) gk=1.Objetive Node Weights Kernel MatrixRatio Assoiation 1 8 nodes K = �I + ARatio Cut 1 8 nodes K = �I �D + AK-L Objetive 1 8 nodes K = �I �D + ANormalized Cut Deg. of node K = �D�1 +D�1AD�1Table 2: Popular graph lustering objetives withorresponding weights and kernels given the aÆnitymatrix Aearlier may be expressed as speial ases of the weightedkernel k -means objetive with the orret hoie of weightsand kernel matrix. Hene, the weighted kernel k -means al-gorithm an be diretly used to loally optimize these graphlustering objetives. Eah iteration of this algorithm ostsO(nz) time, where nz is the number of nonzero entries inthe kernel matrix.Algorithm 1 desribes the weighted kernel k-means algo-rithm. The input is the kernel matrix K, the number oflusters k, weights for the points w, an optional maximumnumber of iterations, and an optional initial lustering, de-noted by f�(0) gk=1.For the Kernighan-Lin (K-L) objetive, whih requiresequally sized lusters, an inremental kernel k -means algo-rithm (in whih points are swapped to improve the objetivefuntion value) an be used to loally optimize the objetive.In Table 2, we display eah of the earlier graph luster-ing objetives, along with the hoie of weights and kernelrequired for the weighted kernel k-means algorithm to mono-tonially optimize the given graph lustering objetive. Thematrix D is a diagonal matrix whose entries orrespond tothe sum of the rows of A, the graph aÆnity matrix. Fi-nally, � is a real number hosen to be large enough that Kis positive de�nite. As long as K is positive de�nite, we



Graph name #nodes #edges DesriptionDATA 2851 15093 �nite element mesh3ELT 4720 13722 �nite element meshUK 4824 6837 �nite element meshADD32 4960 9462 32-bit adderWHITAKER3 9800 28989 �nite element meshCRACK 10240 30380 �nite element meshFE 4ELT2 11143 32818 �nite element meshMEMPLUS 17758 54196 memory iruitBCSSTK30 28294 1007284 sti�ness matrixTable 3: Test graphsan theoretially guarantee that the algorithm monotoni-ally optimizes the orresponding graph lustering objetive.Initialization an be done randomly, or by using anotherlustering algorithm, suh as METIS or spetral lustering.In the ase of our multilevel algorithm, initialization is ob-tained from the lustering from the previous level, or theinitial lustering in the ase of the oarsest graph.An extension to the basi bath algorithm presented in [4℄uses loal searh to avoid loal optima. To avoid this prob-lem, it has been shown [5℄ that loal searh an signi�antlyimprove results by allowing the algorithm to esape suhpoor optima. The loal searh algorithm onsiders the e�eton the objetive funtion of moving a point from one lus-ter to another. It hooses a hain of moves that auses thegreatest improvement in the objetive funtion value. Weinorporate this loal searh proedure to improve the qual-ity of our weighted kernel k -means bath re�nement sheme.
4. EXPERIMENTSIn this setion, we present a number of experiments toshow that our multilevel weighted kernel k -means algorithmoutperforms spetral methods in terms of quality (normal-ized ut and ratio assoiation values) as well as omputationtime. We also present results of lustering the 1.2 millionnode IMDB movie data set graph. In our experiments, weuse the spetral algorithm from [10℄, generalized to workfor both normalized ut and ratio assoiation. This algo-rithm is used as the benhmark spetral algorithm in ourexperiments, as well as the method for lustering the oars-est graph in our multilevel implementation. To speed upomputation, we onsidered only \boundary points" whenrunning weighted kernel k-means; further disussion is omit-ted due to lak of spae. All the experiments are performedon a Linux mahine with 2.4 GHz Pentium IV proessor and1 GB main memory.Additionally, we use the following aronyms: mlkkm(0)stands for our multilevel kernel k-means algorithm with noloal searh, mlkkm(20) is our multilevel algorithm with aloal searh hain length of 20, kkm stands for kernel k-means with random initialization, NCV is short for normal-ized ut value, and RAV is short for ratio assoiation value.
4.1 Clustering of Benchmark GraphsTable 3 lists 9 test graphs1 from various soures and dif-ferent appliation domains. Some of them are benhmark1Downloaded from http://sta�web.ms.gre.a.uk/~.walshaw/partition/

mlkkm(0) kkm METISNCV 2308 4788 2643RAV 18526 1349 12744Table 4: Normalized ut values (NCV) and ratioassoiation values (RAV) for obtaining 5000 lustersof the IMDB movie data set using our multilevelalgorithm (mlkkm(0)), kernel k-means (kkm) andMETISmatries used to test METIS.On eah of the benhmark graphs, we ompared our mul-tilevel algorithms, mlkkm(0) and mlkkm(20), with the spe-tral algorithm in terms of objetive funtion values and om-putation time. We report results for both ratio assoiationand normalized ut, and when 64 lusters are omputed. Wedo not report omparisons between our multilevel algorithmand METIS; in [4℄, we showed that the spetral algorithm issuperior to METIS in terms of better ratio assoiation andnormalized ut values.Figure 2 shows the relative performane of the spetralalgorithm ompared with our multilevel algorithm in termsof RAV and omputation time. In the left panel, for eahgraph we plot the ratio of the RAV of all methods to thatof mlkkm(20) | ratios less than 1 indiate that mlkkm(20)produes higher RAVs (and thus performs better). We ansee that 100% of the RAVs produed using mlkkm(20) arehigher than those obtained by the spetral algorithm. Also,we see that mlkkm(20) performs onsistently better thanmlkkm(0), whih implies that loal searh improves the RAVin all ases (maximally by 3%).In the right panel of Figure 2, we plot the omputationtime for the three methods. It is lear that our multilevelalgorithm is muh faster than the spetral algorithm. Forexample, in the ase of ADD32, the spetral algorithm is48 times slower than mlkkm(20) and 55 times slower thanmlkkm(0).Results for the normalized ut objetive appear in Fig-ure 3. For eah graph, we plot the ratio of NCV of othermethods to that of mlkkm(20). As opposed to ratio as-soiation, values that are larger than 1 in Figure 3 indi-ate that mlkkm(20) produes lower NCVs (and thus per-forms better). We see that 67% of the NCVs produed usingmlkkm(20) are lower than those produed using the spetralalgorithm. We also see that mlkkm(20), whih utilizes theloal searh tehnique, performs muh better than mlkkm(0)in many ases.In terms of omputation time, our multilevel methodsagain outperform the spetral algorithm in all ases. ForADD32, spetral is 58 times slower than mlkkm(20) and 60times slower than mlkkm(0).
4.2 The IMDB Movie Data Set — A Case StudyThe IMDB data set2 ontains information about movies,musi bands, ators, movie festivals and events. By onnet-ing ators and movies or events in whih they partiipate,we form a sparse undireted graph with approximately 1.2million nodes and 7.6 million edges.It is impratial to run a spetral algorithm diretly onthis data set to produe 5000 lusters not only beause om-2Downloaded from http://www.imdb.om/interfaes
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Figure 2: Quality and omputation time of our multilevel methods ompared with the benhmark spetralalgorithm. The left panel plots the ratio of the ratio assoiation value of every algorithm to that of mlkkm(20)for 64 lusters. Note that bars below the baseline orrespond to ases where mlkkm(20) performs better.The right panel ompares omputation times for generating 64 lusters using di�erent algorithms. As anexample, on the ADD32 graph, the spetral algorithm is 48 times slower than mlkkm(20) and 58 times slowerthan mlkkm(0).
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Figure 3: Quality and omputation time of our multilevel methods ompared with the benhmark spetralalgorithm. The left panel plots the ratio of the normalized ut value of every algorithm to that of mlkkm(20)for 64 lusters. Note that bars above the baseline orrespond to the ases where mlkkm(20) performs better.The right panel ompares omputation times for generating 64 lusters. As an example, on the ADD32graph, the spetral algorithm is 58 times slower than mlkkm(20) and 60 times slower than mlkkm(0).Movies AtorsHarry Potter and the Sorerer's Stone (2001) Daniel Radli�e, Rupert Grint, Emma Watson, Tom FeltonHarry Potter and the Chamber of Serets (2002) Peter Best, Sean Biggersta�, Sott Fern, Alfred Enoh, Joshua HerdmanHarry Potter and the Prisoner of Azkaban (2004) Harry Melling, Matthew Lewis, Devon Murray, Robert PattinsonHarry Potter and the Goblet of Fire (2005) James Phelps, Oliver Phelps, Edward Randell, Jamie WaylettHarry Potter: Behind the Magi (2001 TV) Shefali Chowdhury, Katie Leung, Bonnie Wright, Stanislav IanevskiHarry Potter und die Kammer des Shrekens: Jamie Yeates, Chris RankinDas grobe RTL Speial zum Film (2002 TV)Table 5: A Seletion of Movies and Ators in Cluster 633
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nz = 7606432Figure 4: Graphial Plots of Cluster 633 of IMDB(Harry Potter). The right plot shows a loser viewof the luster irled in the left plot.puting 5000 eigenvetors of a graph of this size would beextremely slow but also beause storing 5000 eigenvetorsin main memory requires 24 GB, whih is prohibitive. Thusour multilevel algorithm is also onsiderably more eÆientin terms of memory usage in addition to omputation time.Sine we annot run spetral methods on this data set, weompare our multilevel algorithm (mlkkm(0)) to METIS andweighted kernel k-means with random initialization (kkm).It takes our multilevel algorithm approximately twenty-�veminutes to luster this graph into 5000 lusters, and theluster sizes range from 13 to 7616 (for the normalized utobjetive). Table 4 shows the normalized ut values andratio assoiation values for 5000 lusters generated usingthese three methods. We see that our multilevel algorithmis markedly superior to kkm: its NCV is twie as high asthe NCV of mlkkm(0) and the RAV of kkm is less thanone tenth of the RAV of mlkkm(0). Comparing METIS andmlkkm(0), the latter is superior and ahieves a RAV that is50% higher and a NCV that is 10% lower.To demonstrate the quality of results, we disuss a sam-pling of the produed lusters. After lustering, we rear-range the rows and olumns suh that rows (olumns) inthe same luster are adjaent to one another. Cluster 633,irled in the right plot of Figure 4, is of size 121 andmainly ontains \Harry Potter" movies and the ators inthese movies. The left olumn of Table 5 lists movies in theluster, where we see 3 Harry Potter movies that were re-leased in the past and 1 to be released in November, 2005.There are also 2 other doumentary TV programs. Theright olumn of Table 5 lists a seletion of some of the a-tors in the luster, where we see the major ast members ofthe Harry Potter movies, suh as Daniel Radli�e, RupertGrint, Emma Watson, et.Cluster 3537 ontains the short series \Festival n�umero"(No. 1-12), shot in year 1965; luster 4400 ontains the Ko-rean movie \Chunhyang" and 19 of its ast members whoated only in this movie in the database. Other small lus-ters follow this pattern, i.e., most of them are about onemovie or movie series and ontain ast members that atedonly in this movie or movie series. Popular ators, dire-tors or well-known movie festivals are assoiated with morepeople, so generally they belong to muh larger lusters.

5. CONCLUSIONSWe have presented a new multilevel algorithm for graphlustering. This algorithm has key bene�ts over existinggraph lustering algorithms. Unlike previous multilevel al-gorithms suh as METIS, our algorithm is general and ap-tures a number of graph lustering objetives. This freesus from the restrition of equal-size lusters. It has advan-tages over spetral methods in that the multilevel approahis onsiderably faster and gives better �nal objetive fun-tion values.Using a number of benhmark test graphs, we demon-strated that, in general, our algorithm produes better ra-tio assoiation values and normalized ut values when usingspetral initialization at the oarsest level. As the oarsestgraph is signi�antly smaller than the input graph, spetralmethods are feasible in this ase, and the running time ofthe algorithm is still muh faster than spetral lustering onthe input graph. Spetral methods have attrated intensestudy over the last several years as a powerful method forgraph lustering; our results indiate that this may not bethe most powerful tehnique for partitioning graphs. Fur-thermore, given an input pairwise similarity matrix betweendata vetors, our approah an be viewed as a fast multilevelalgorithm for optimizing the kernel k -means objetive.Our approah also onsumes far less memory than spetralmethods. Spetral lustering of a 1.2 million node movienetwork into 5000 lusters would require several gigabytesof storage. On the other hand, we were able to luster thisnetwork in approximately twenty-�ve minutes without anysigni�ant memory overhead.Aknowledgments. This researh was supported byNSF grant CCF-0431257, NSF Career Award ACI-0093404,and NSF-ITR award IIS-0325116.
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