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ABSTRACTGraph 
lustering (also 
alled graph partitioning) | 
lus-tering the nodes of a graph | is an important problem indiverse data mining appli
ations. Traditional approa
hesinvolve optimization of graph 
lustering obje
tives su
h asnormalized 
ut or ratio asso
iation; spe
tral methods arewidely used for these obje
tives, but they require eigen-ve
tor 
omputation whi
h 
an be slow. Re
ently, graph
lustering with a general 
ut obje
tive has been shown tobe mathemati
ally equivalent to an appropriate weightedkernel k -means obje
tive fun
tion. In this paper, we ex-ploit this equivalen
e to develop a very fast multilevel al-gorithm for graph 
lustering. Multilevel approa
hes involve
oarsening, initial partitioning and re�nement phases, all ofwhi
h may be spe
ialized to di�erent graph 
lustering ob-je
tives. Unlike existing multilevel 
lustering approa
hes,su
h as METIS, our algorithm does not 
onstrain the 
lus-ter sizes to be nearly equal. Our approa
h gives a theoreti
alguarantee that the re�nement step de
reases the graph 
utobje
tive under 
onsideration. Experiments show that wea
hieve better �nal obje
tive fun
tion values as 
ompared toa state-of-the-art spe
tral 
lustering algorithm: on a seriesof ben
hmark test graphs with up to thirty thousand nodesand one million edges, our algorithm a
hieves lower normal-ized 
ut values in 67% of our experiments and higher ra-tio asso
iation values in 100% of our experiments. Further-more, on large graphs, our algorithm is signi�
antly fasterthan spe
tral methods. Finally, our algorithm requires farless memory than spe
tral methods; we 
luster a 1.2 mil-lion node movie network into 5000 
lusters, whi
h due tomemory requirements 
annot be done dire
tly with spe
tralmethods.
Categories and Subject DescriptorsG.1.8.1 [Numeri
al Analysis℄: Spe
tral Methods; H.3.3.a[Information Sear
h and Retrieval℄: Clustering; I.5.3.a[Pattern Re
ognition℄: Clustering Algorithms
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1. INTRODUCTIONGraph 
lustering (also 
alled graph partitioning) is an im-portant problem in many domains. Cir
uit partitioning,VLSI design, task s
heduling, bioinformati
s, so
ial networkanalysis and a host of other problems all rely on eÆ
ient ande�e
tive graph 
lustering algorithms. In many data miningappli
ations, pairwise similarities between data obje
ts 
anbe modeled as a graph, and the subsequent problem of data
lustering 
an be viewed as a graph 
lustering problem.The problem of graph 
lustering has been studied forde
ades, and a number of di�erent approa
hes have beenproposed. Spe
tral methods have been widely used for graph
lustering [2, 6, 9℄. These algorithms use the eigenve
tors ofa graph aÆnity matrix, or a matrix derived from the aÆn-ity matrix, to partition the graph. Various spe
tral algo-rithms have been developed for a number of di�erent obje
-tive fun
tions, su
h as normalized 
ut [9℄ and ratio 
ut [2℄.Furthermore, extensive resear
h has been done on spe
tralpostpro
essing: going from the eigenve
tor matrix to a dis-
rete 
lustering [4, 10℄.It was re
ently shown that a wide 
lass of graph 
lus-tering obje
tives, in
luding ratio 
ut, ratio asso
iation, theKernighan-Lin obje
tive and normalized 
ut, 
an all be viewedas spe
ial 
ases of the weighted kernel k -means obje
tivefun
tion [3, 4℄. In addition to unifying several di�erent graph
lustering obje
tives, in
luding a number of spe
tral 
lus-tering obje
tives, this result implies that a simple weightedkernel k -means algorithm 
an be used to optimize graph
lustering obje
tives. The basi
 kernel k -means algorithm,however, relies heavily on e�e
tive 
luster initialization toa
hieve good results, and 
an often yield poor results.In this paper, we develop a multilevel algorithm for graph
lustering that uses weighted kernel k -means as the re�ne-ment algorithm. Multilevel methods have been used exten-sively for graph 
lustering with the Kernighan-Lin obje
-tive, whi
h attempts to minimize the 
ut in the graph whilemaintaining equal-sized 
lusters [1, 7, 8℄. In multilevel al-gorithms, the graph is repeatedly 
oarsened level by leveluntil only a small number of nodes are left. Then, an ini-



Name Obje
tive Fun
tionRatio Asso
iation maximizeV1;:::;Vk Pk
=1 links(V
;V
)jV
jRatio Cut minimizeV1;:::;Vk Pk
=1 links(V
;VnV
)jV
jNormalized Cut minimizeV1;:::;Vk Pk
=1 links(V
;VnV
)degree(V
)Table 1: Examples of graph 
lustering obje
tives.Note that Normalized Asso
iation = k� NormalizedCut.tial 
lustering on this small graph is performed. Finally, thegraph is un
oarsened level by level, and at ea
h level, the
lustering from the previous level is re�ned using the re�ne-ment algorithm. This multilevel strategy results in a veryfast and e�e
tive graph 
lustering algorithm. METIS [8℄ isperhaps the most popular multilevel algorithm, and is sig-ni�
antly faster than spe
tral methods on very large graphswhen equally sized 
lusters are desired.However, all previous multilevel algorithms, su
h as METIS,su�er from the serious drawba
k of restri
ting 
lusters to beof equal size. The algorithm presented in this paper removesthis restri
tion: instead of a Kernighan-Lin algorithm for there�nement phase, our algorithm employs weighted kernel k -means.We present experimental results on a number of test graphsto illustrate the advantage of our approa
h. We show thatour algorithm is signi�
antly faster than eigenve
tor 
om-putation, a ne
essary step for spe
tral 
lustering methods,on large graphs. We also demonstrate that our algorithmoutperforms a state-of-the-art spe
tral 
lustering algorithmin terms of quality, as measured by the graph obje
tive fun
-tion values. On our ben
hmark test graphs of varying sizes,the �nal obje
tive fun
tion values of the multilevel algorithmare better than the spe
tral algorithm in 100% of runs forratio asso
iation, and 67% of runs for normalized 
ut. Wealso present results on data arising from real-life data min-ing appli
ations. We 
luster the 1.2 million node IMDBmovie network into 5000 
lusters. Running a spe
tral algo-rithm dire
tly on this data set would require storage of 5000eigenve
tors, whi
h is prohibitive.
2. GRAPH CLUSTERINGWe �rst introdu
e a number di�erent graph 
lustering ob-je
tives. As we will see later, ea
h of the following obje
tivesmay be expressed as spe
ial 
ases of the weighted kernel k -means obje
tive fun
tion, whi
h will motivate our use ofweighted kernel k -means as the algorithm used in the re-�nement phase.For data given as a graph, a number of di�erent obje
tiveshave been proposed for the graph 
lustering problem. Weare given a graphG = (V; E ; A), 
onsisting of a set of verti
esV and a set of edges E su
h that an edge between two verti
esrepresents their similarity. The aÆnity matrix A is jVj� jVjwhose entries represent the weights of the edges (an entry ofA is 0 if there is no edge between the 
orresponding verti
es).We denote links(A;B) = Pi2A;j2BAij ; that is, the sumof the weights of edges from one 
luster to the other. Letdegree(A) = links(A;V), the links to all verti
es from nodesin A.A list of some of the most 
ommon graph 
lustering obje
-
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Figure 1: Overview of the multilevel algorithm (fork = 2).tives is presented in Table 1. The Kernighan-Lin obje
tive,another 
ommon obje
tive fun
tion, is the same as ratio 
utex
ept that 
lusters are additionally 
onstrained to be ofequal size.For ratio asso
iation, ratio 
ut and normalized 
ut, themost 
ommon approa
h for optimization has been to use aspe
tral algorithm. Su
h an algorithm is derived by relaxingthe above obje
tives so that a global solution to the relaxedobje
tive may be found by 
omputing eigenve
tors of an ap-propriate matrix. On
e these eigenve
tors are 
omputed,a postpro
essing step derives a dis
rete 
lustering from theeigenve
tors. See the referen
es [2, 9, 10℄ for further detailson the spe
tral algorithms asso
iated with ea
h of these ob-je
tives.For the Kernighan-Lin obje
tive, the most su

essful ap-proa
h for optimizing the obje
tive has been to use a mul-tilevel algorithm.
3. THE MULTILEVEL APPROACHIn this se
tion, we develop a new, general algorithm forgraph 
lustering based on multilevel methods. The multi-level approa
h has been made popular by METIS [8℄, thougha number of multilevel 
lustering algorithms have been stud-ied, dating ba
k to [1, 7℄. Our algorithm will di�er from pre-vious approa
hes in that it works for a wide 
lass of graph
lustering obje
tives, and that all three phases of the algo-rithm 
an be spe
ialized for ea
h graph 
lustering obje
tive.Below, we des
ribe ea
h phase of the algorithm.We assume that we are given an input graph, denotedby G0 = (V0; E0; A0), as well as the number of partitionsrequested, k. See Figure 1 for a graphi
al overview of themultilevel approa
h.
3.1 Coarsening PhaseGiven the initial graph G0, the graph is repeatedly trans-formed into smaller and smaller graphs G1, G2, :::; Gm su
hthat jV0j > jV1j > ::: > jVmj. To 
oarsen a graph from Gi toGi+1, a number of di�erent te
hniques may be used. In gen-eral, sets of nodes in Gi are 
ombined to form supernodesin Gi+1. When 
ombining a set of nodes into supernodes,the edge weights between two supernodes in Gi+1 are takento be the sum of the edge weights between the nodes in Gi
omprising the supernodes.



Our 
oarsening approa
h works as follows: given a graph,start with all nodes unmarked. Visit ea
h vertex in a randomorder. For ea
h unmarked vertex x, if all neighbors of x havebeen marked, mark x and pro
eed to the next unmarkedvertex. On the other hand, if x has an unmarked neighbor,then merge x with the unmarked vertex y that maximizese(x; y)w(x) + e(x; y)w(y) ; (1)where e(x; y) 
orresponds to the edge weight between ver-ti
es x and y and w(x) is the weight of vertex x. Then markboth x and y. On
e all verti
es are marked, the 
oarseningfor this level is 
ompleted.As we will see when dis
ussing the 
onne
tion betweengraph 
lustering and weighted kernel k -means, di�erent graph
lustering obje
tives indu
e di�erent vertex weights. For ex-ample, in normalized 
ut, the weight of a vertex is its degree,and (1) redu
es to the normalized 
ut between x and y. Forratio asso
iation, (1) simpli�es to the heaviest edge 
riterionof METIS, sin
e all verti
es have unit weight.
3.2 Initial Clustering PhaseEventually, the graph is 
oarsened to the point where veryfew nodes remain in the graph. We spe
ify a parameter in-di
ating how small we want the 
oarsest graph to be; in ourexperiments, we stop 
oarsening when the graph has lessthan 20k nodes, where k is the number of desired 
lusters.At this point, we perform an initial partitioning by 
luster-ing the 
oarsest graph.One way to obtain an initial partitioning is to use theregion growing algorithm of METIS [8℄. However, this ap-proa
h is inadequate for our purposes sin
e it generates 
lus-ters of equal size. We have found the best method for ini-tialization to be a spe
tral algorithm. We use the spe
-tral algorithm of Yu and Shi [10℄, whi
h we generalize towork with arbitrary weights [4℄. Thus our initial 
luster-ing is \
ustomized" for di�erent graph 
lustering obje
tives.Sin
e the 
oarsest graph is signi�
antly smaller than the in-put graph, spe
tral methods are adequate in terms of speed.We �nd the spe
tral methods to yield the best quality of re-sults, though they are somewhat less eÆ
ient than the regiongrowing algorithm. Hen
e, when eÆ
ien
y is a 
on
ern, theregion growing algorithm may be used instead.
3.3 Refinement PhaseThe �nal phase of the algorithm is the re�nement phase.Given a graph Gi, we form the graph Gi�1 (Gi�1 is thesame graph used in level i � 1 in the 
oarsening phase).We extend the 
lustering from Gi to Gi�1 as follows: ifa supernode is in a 
luster 
, then all nodes in Gi formedfrom that supernode are in 
luster 
. This yields an initial
lustering for the graph, whi
h is then improved using are�nement algorithm. Note that we also run the re�nementalgorithm on the 
oarsest graph.The algorithm terminates after the re�nement algorithmis run on the original graph G0. Sin
e we have a good ini-tial 
lustering at ea
h level, the re�nement algorithm often
onverges very qui
kly. Thus, this approa
h is extremelyeÆ
ient.At ea
h re�nement step, our algorithm uses an approa
hinspired by the re
ently-shown theoreti
al 
onne
tion be-tween kernel k -means and spe
tral 
lustering [4℄. In [4℄, weproved that ea
h of the graph 
lustering obje
tives given

Algorithm 1: Re�nement Algorithm.Weighted Kernel kmeans(K, k, w, tmax,f�(0)
 gk
=1, f�
gk
=1)Input: K: kernel matrix, k: number of 
lusters,w: weights for ea
h point, tmax: optional maxi-mum number of iterations, f�(0)
 gk
=1: optional ini-tial 
lusteringOutput: f�
gk
=1: �nal 
lustering of the points1. If no initial 
lustering is given, initialize the k
lusters �(0)1 ; :::; �(0)k randomly. Set t = 0.2. For ea
h row i ofK and every 
luster 
, 
omputed(i;m
) = Kii � 2Pj2�(t)
 wjKijPj2�(t)
 wj+Pj;l2�(t)
 wjwlKjl(Pj2�(t)
 wj)2 :3. Find 
�(i) = argmin
d(i;m
), resolving tiesarbitrarily. Compute the updated 
lusters as�(t+1)
 = fi : 
�(i) = 
g:4. If not 
onverged or tmax > t, set t = t + 1and go to Step 3; Otherwise, stop and output �nal
lusters f�(t+1)
 gk
=1.Obje
tive Node Weights Kernel MatrixRatio Asso
iation 1 8 nodes K = �I + ARatio Cut 1 8 nodes K = �I �D + AK-L Obje
tive 1 8 nodes K = �I �D + ANormalized Cut Deg. of node K = �D�1 +D�1AD�1Table 2: Popular graph 
lustering obje
tives with
orresponding weights and kernels given the aÆnitymatrix Aearlier may be expressed as spe
ial 
ases of the weightedkernel k -means obje
tive with the 
orre
t 
hoi
e of weightsand kernel matrix. Hen
e, the weighted kernel k -means al-gorithm 
an be dire
tly used to lo
ally optimize these graph
lustering obje
tives. Ea
h iteration of this algorithm 
ostsO(nz) time, where nz is the number of nonzero entries inthe kernel matrix.Algorithm 1 des
ribes the weighted kernel k-means algo-rithm. The input is the kernel matrix K, the number of
lusters k, weights for the points w, an optional maximumnumber of iterations, and an optional initial 
lustering, de-noted by f�(0)
 gk
=1.For the Kernighan-Lin (K-L) obje
tive, whi
h requiresequally sized 
lusters, an in
remental kernel k -means algo-rithm (in whi
h points are swapped to improve the obje
tivefun
tion value) 
an be used to lo
ally optimize the obje
tive.In Table 2, we display ea
h of the earlier graph 
luster-ing obje
tives, along with the 
hoi
e of weights and kernelrequired for the weighted kernel k-means algorithm to mono-toni
ally optimize the given graph 
lustering obje
tive. Thematrix D is a diagonal matrix whose entries 
orrespond tothe sum of the rows of A, the graph aÆnity matrix. Fi-nally, � is a real number 
hosen to be large enough that Kis positive de�nite. As long as K is positive de�nite, we



Graph name #nodes #edges Des
riptionDATA 2851 15093 �nite element mesh3ELT 4720 13722 �nite element meshUK 4824 6837 �nite element meshADD32 4960 9462 32-bit adderWHITAKER3 9800 28989 �nite element meshCRACK 10240 30380 �nite element meshFE 4ELT2 11143 32818 �nite element meshMEMPLUS 17758 54196 memory 
ir
uitBCSSTK30 28294 1007284 sti�ness matrixTable 3: Test graphs
an theoreti
ally guarantee that the algorithm monotoni-
ally optimizes the 
orresponding graph 
lustering obje
tive.Initialization 
an be done randomly, or by using another
lustering algorithm, su
h as METIS or spe
tral 
lustering.In the 
ase of our multilevel algorithm, initialization is ob-tained from the 
lustering from the previous level, or theinitial 
lustering in the 
ase of the 
oarsest graph.An extension to the basi
 bat
h algorithm presented in [4℄uses lo
al sear
h to avoid lo
al optima. To avoid this prob-lem, it has been shown [5℄ that lo
al sear
h 
an signi�
antlyimprove results by allowing the algorithm to es
ape su
hpoor optima. The lo
al sear
h algorithm 
onsiders the e�e
ton the obje
tive fun
tion of moving a point from one 
lus-ter to another. It 
hooses a 
hain of moves that 
auses thegreatest improvement in the obje
tive fun
tion value. Wein
orporate this lo
al sear
h pro
edure to improve the qual-ity of our weighted kernel k -means bat
h re�nement s
heme.
4. EXPERIMENTSIn this se
tion, we present a number of experiments toshow that our multilevel weighted kernel k -means algorithmoutperforms spe
tral methods in terms of quality (normal-ized 
ut and ratio asso
iation values) as well as 
omputationtime. We also present results of 
lustering the 1.2 millionnode IMDB movie data set graph. In our experiments, weuse the spe
tral algorithm from [10℄, generalized to workfor both normalized 
ut and ratio asso
iation. This algo-rithm is used as the ben
hmark spe
tral algorithm in ourexperiments, as well as the method for 
lustering the 
oars-est graph in our multilevel implementation. To speed up
omputation, we 
onsidered only \boundary points" whenrunning weighted kernel k-means; further dis
ussion is omit-ted due to la
k of spa
e. All the experiments are performedon a Linux ma
hine with 2.4 GHz Pentium IV pro
essor and1 GB main memory.Additionally, we use the following a
ronyms: mlkkm(0)stands for our multilevel kernel k-means algorithm with nolo
al sear
h, mlkkm(20) is our multilevel algorithm with alo
al sear
h 
hain length of 20, kkm stands for kernel k-means with random initialization, NCV is short for normal-ized 
ut value, and RAV is short for ratio asso
iation value.
4.1 Clustering of Benchmark GraphsTable 3 lists 9 test graphs1 from various sour
es and dif-ferent appli
ation domains. Some of them are ben
hmark1Downloaded from http://sta�web.
ms.gre.a
.uk/~
.walshaw/partition/

mlkkm(0) kkm METISNCV 2308 4788 2643RAV 18526 1349 12744Table 4: Normalized 
ut values (NCV) and ratioasso
iation values (RAV) for obtaining 5000 
lustersof the IMDB movie data set using our multilevelalgorithm (mlkkm(0)), kernel k-means (kkm) andMETISmatri
es used to test METIS.On ea
h of the ben
hmark graphs, we 
ompared our mul-tilevel algorithms, mlkkm(0) and mlkkm(20), with the spe
-tral algorithm in terms of obje
tive fun
tion values and 
om-putation time. We report results for both ratio asso
iationand normalized 
ut, and when 64 
lusters are 
omputed. Wedo not report 
omparisons between our multilevel algorithmand METIS; in [4℄, we showed that the spe
tral algorithm issuperior to METIS in terms of better ratio asso
iation andnormalized 
ut values.Figure 2 shows the relative performan
e of the spe
tralalgorithm 
ompared with our multilevel algorithm in termsof RAV and 
omputation time. In the left panel, for ea
hgraph we plot the ratio of the RAV of all methods to thatof mlkkm(20) | ratios less than 1 indi
ate that mlkkm(20)produ
es higher RAVs (and thus performs better). We 
ansee that 100% of the RAVs produ
ed using mlkkm(20) arehigher than those obtained by the spe
tral algorithm. Also,we see that mlkkm(20) performs 
onsistently better thanmlkkm(0), whi
h implies that lo
al sear
h improves the RAVin all 
ases (maximally by 3%).In the right panel of Figure 2, we plot the 
omputationtime for the three methods. It is 
lear that our multilevelalgorithm is mu
h faster than the spe
tral algorithm. Forexample, in the 
ase of ADD32, the spe
tral algorithm is48 times slower than mlkkm(20) and 55 times slower thanmlkkm(0).Results for the normalized 
ut obje
tive appear in Fig-ure 3. For ea
h graph, we plot the ratio of NCV of othermethods to that of mlkkm(20). As opposed to ratio as-so
iation, values that are larger than 1 in Figure 3 indi-
ate that mlkkm(20) produ
es lower NCVs (and thus per-forms better). We see that 67% of the NCVs produ
ed usingmlkkm(20) are lower than those produ
ed using the spe
tralalgorithm. We also see that mlkkm(20), whi
h utilizes thelo
al sear
h te
hnique, performs mu
h better than mlkkm(0)in many 
ases.In terms of 
omputation time, our multilevel methodsagain outperform the spe
tral algorithm in all 
ases. ForADD32, spe
tral is 58 times slower than mlkkm(20) and 60times slower than mlkkm(0).
4.2 The IMDB Movie Data Set — A Case StudyThe IMDB data set2 
ontains information about movies,musi
 bands, a
tors, movie festivals and events. By 
onne
t-ing a
tors and movies or events in whi
h they parti
ipate,we form a sparse undire
ted graph with approximately 1.2million nodes and 7.6 million edges.It is impra
ti
al to run a spe
tral algorithm dire
tly onthis data set to produ
e 5000 
lusters not only be
ause 
om-2Downloaded from http://www.imdb.
om/interfa
es
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ompares 
omputation times for generating 64 
lusters using di�erent algorithms. As anexample, on the ADD32 graph, the spe
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orrespond to the 
ases where mlkkm(20) performs better.The right panel 
ompares 
omputation times for generating 64 
lusters. As an example, on the ADD32graph, the spe
tral algorithm is 58 times slower than mlkkm(20) and 60 times slower than mlkkm(0).Movies A
torsHarry Potter and the Sor
erer's Stone (2001) Daniel Rad
li�e, Rupert Grint, Emma Watson, Tom FeltonHarry Potter and the Chamber of Se
rets (2002) Peter Best, Sean Biggersta�, S
ott Fern, Alfred Eno
h, Joshua HerdmanHarry Potter and the Prisoner of Azkaban (2004) Harry Melling, Matthew Lewis, Devon Murray, Robert PattinsonHarry Potter and the Goblet of Fire (2005) James Phelps, Oliver Phelps, Edward Randell, Jamie WaylettHarry Potter: Behind the Magi
 (2001 TV) Shefali Chowdhury, Katie Leung, Bonnie Wright, Stanislav IanevskiHarry Potter und die Kammer des S
hre
kens: Jamie Yeates, Chris RankinDas grobe RTL Spe
ial zum Film (2002 TV)Table 5: A Sele
tion of Movies and A
tors in Cluster 633
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al Plots of Cluster 633 of IMDB(Harry Potter). The right plot shows a 
loser viewof the 
luster 
ir
led in the left plot.puting 5000 eigenve
tors of a graph of this size would beextremely slow but also be
ause storing 5000 eigenve
torsin main memory requires 24 GB, whi
h is prohibitive. Thusour multilevel algorithm is also 
onsiderably more eÆ
ientin terms of memory usage in addition to 
omputation time.Sin
e we 
annot run spe
tral methods on this data set, we
ompare our multilevel algorithm (mlkkm(0)) to METIS andweighted kernel k-means with random initialization (kkm).It takes our multilevel algorithm approximately twenty-�veminutes to 
luster this graph into 5000 
lusters, and the
luster sizes range from 13 to 7616 (for the normalized 
utobje
tive). Table 4 shows the normalized 
ut values andratio asso
iation values for 5000 
lusters generated usingthese three methods. We see that our multilevel algorithmis markedly superior to kkm: its NCV is twi
e as high asthe NCV of mlkkm(0) and the RAV of kkm is less thanone tenth of the RAV of mlkkm(0). Comparing METIS andmlkkm(0), the latter is superior and a
hieves a RAV that is50% higher and a NCV that is 10% lower.To demonstrate the quality of results, we dis
uss a sam-pling of the produ
ed 
lusters. After 
lustering, we rear-range the rows and 
olumns su
h that rows (
olumns) inthe same 
luster are adja
ent to one another. Cluster 633,
ir
led in the right plot of Figure 4, is of size 121 andmainly 
ontains \Harry Potter" movies and the a
tors inthese movies. The left 
olumn of Table 5 lists movies in the
luster, where we see 3 Harry Potter movies that were re-leased in the past and 1 to be released in November, 2005.There are also 2 other do
umentary TV programs. Theright 
olumn of Table 5 lists a sele
tion of some of the a
-tors in the 
luster, where we see the major 
ast members ofthe Harry Potter movies, su
h as Daniel Rad
li�e, RupertGrint, Emma Watson, et
.Cluster 3537 
ontains the short series \Festival n�umero"(No. 1-12), shot in year 1965; 
luster 4400 
ontains the Ko-rean movie \Chunhyang" and 19 of its 
ast members whoa
ted only in this movie in the database. Other small 
lus-ters follow this pattern, i.e., most of them are about onemovie or movie series and 
ontain 
ast members that a
tedonly in this movie or movie series. Popular a
tors, dire
-tors or well-known movie festivals are asso
iated with morepeople, so generally they belong to mu
h larger 
lusters.

5. CONCLUSIONSWe have presented a new multilevel algorithm for graph
lustering. This algorithm has key bene�ts over existinggraph 
lustering algorithms. Unlike previous multilevel al-gorithms su
h as METIS, our algorithm is general and 
ap-tures a number of graph 
lustering obje
tives. This freesus from the restri
tion of equal-size 
lusters. It has advan-tages over spe
tral methods in that the multilevel approa
his 
onsiderably faster and gives better �nal obje
tive fun
-tion values.Using a number of ben
hmark test graphs, we demon-strated that, in general, our algorithm produ
es better ra-tio asso
iation values and normalized 
ut values when usingspe
tral initialization at the 
oarsest level. As the 
oarsestgraph is signi�
antly smaller than the input graph, spe
tralmethods are feasible in this 
ase, and the running time ofthe algorithm is still mu
h faster than spe
tral 
lustering onthe input graph. Spe
tral methods have attra
ted intensestudy over the last several years as a powerful method forgraph 
lustering; our results indi
ate that this may not bethe most powerful te
hnique for partitioning graphs. Fur-thermore, given an input pairwise similarity matrix betweendata ve
tors, our approa
h 
an be viewed as a fast multilevelalgorithm for optimizing the kernel k -means obje
tive.Our approa
h also 
onsumes far less memory than spe
tralmethods. Spe
tral 
lustering of a 1.2 million node movienetwork into 5000 
lusters would require several gigabytesof storage. On the other hand, we were able to 
luster thisnetwork in approximately twenty-�ve minutes without anysigni�
ant memory overhead.A
knowledgments. This resear
h was supported byNSF grant CCF-0431257, NSF Career Award ACI-0093404,and NSF-ITR award IIS-0325116.
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