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Abstract

We develop an approach to combine two types of mu-
sic generation models, namely symbolic and raw audio
models. While symbolic models typically operate at the
note level and are able to capture long-term dependen-
cies, they lack the expressive richness and nuance of
performed music. Raw audio models train directly on
raw audio waveforms, and can be used to produce ex-
pressive music; however, these models typically lack
structure and long-term dependencies. We describe a
work-in-progress model that trains a raw audio model
based on the recently-proposed WaveNet architecture,
but that incorporates the notes of the composition as a
secondary input to the network. When generating novel
compositions, we utilize an LSTM network whose out-
put feeds into the raw audio model, thus yielding an
end-to-end model that generates raw audio outputs com-
bining the best of both worlds. We describe initial re-
sults of our approach, which we believe to show con-
siderable promise for structured music generation.

Introduction
Deep learning has become an indispensable tool in the field
of automated music generation. A number of deep learning
architectures have been studied for performing tasks such as
pop music generation (Chu, Urtasun, and Fidler 2017) and
for creating novel melodies that are similar to classical com-
positions (Hadjeres, Pachet, and Nielsen 2017). Tools now
exist for helping artists write music in order to augment the
creative process,1 and there exist various commercial music
generation systems.2

Existing generation tools can be broadly classified into
two types: symbolic and raw audio models. Symbolic meth-
ods train and operate at the note level—based on melodies
and notes from existing training data, these methods pro-
duce novel melodies in the form of MIDI or related outputs.
A popular approach in this space is to use recurrent neural
networks, and in particular Long Short Term Memory net-
works (LSTMs). An advantage of this approach is that the
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LSTMs are able to capture medium-scale melodic structure
in music fairly well (Johnson 2017). They are also typically
fast to generate novel melodies, but have the disadvantage
that the resulting melodies must be interpreted by a human
or synthesizer.

With the recent success of speech synthesis models such
as WaveNet (van den Oord et al. 2016), there has been in-
creased interest in utilizing raw audio models for music gen-
eration. Raw audio models operate directly on the audio
waveforms, both at training and generation times. WaveNet,
for instance, is a model that attempts to predict the next sam-
ple of audio. The waveforms are typically sampled at 16
kHz, resulting in a computationally expensive model that
requires many predictions per second of audio. Once the
model has been trained on existing audio, novel audio can
be generated, though the generation time for the original
WaveNet model is slow. The advantage of raw audio mod-
els, however, is that they have the ability to produce con-
siderable richer and more nuanced musical outputs that can
capture emotion, mood, etc. In initial work, the model was
shown to produce realistic-sounding piano music. Other ad-
vantages of these methods include the ability to produce
novel sounds, such as combining multiple instruments to-
gether (Simon and Oore 2017), as well as generating vo-
cals (Blaauw and Bonada 2017). Further, recent work on
WaveNet has developed faster generation methods (Le Paine
et al. 2016). Unfortunately, existing raw audio models are
limited in that they fail to capture any medium- or long-term
effects in the music; most generated music sounds improvi-
sational, with no clear strucuture.

We believe that combining these two approaches will
yield new possibilities for music generation, and open the
door to a host of new music generation tools. In particu-
lar, we propose to train a biaxial LSTM to create symbolic
melodies, and then treat these melodies as local condition-
ing of a WaveNet model. Thus, the LSTM model allows us
to create long-term melodic structure in the music, while the
WaveNet component interprets and expands upon the gener-
ated melodic structure.

The research presented in this paper is work-in-progress,
but we discuss some initial experimental results. We first dis-
cuss tuning of the unconditioned WaveNet model to produce
classical piano music. Once we have tuned this model, we
then discuss our extensions to the conditioned case. We first
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generate raw audio on pre-specified melodies (i.e. Happy
Birthday and Ode to Joy) after training on the MusicNet
dataset; then we demonstrate preliminary results of training
both the LSTM and the WaveNet on the training data and
generating a realistic raw audio melody by using the output
of the LSTM generation as a local conditioning time series
to the WaveNet model.

Background

We elaborate on two prevalent deep learning models for mu-
sic generation, namely raw audio models and symbolic mod-
els.

Generative Raw Audio Models

Initial efforts to generate raw audio involved models used
primarily for image generation, such as char-rnn and
LSTMs. Raw audio generations from these networks are of-
ten noisy and unstructured; they are limited in their capacity
to abstract higher level representations of raw audio, mainly
due to problems with overfitting (Briot, Hadjeres, and Pachet
2018).

In 2016, DeepMind introduced WaveNet (van den Oord
et al. 2016), a generative model for general raw audio,
designed mainly for speech applications. At a high level,
WaveNet is a deep learning architecture that operates di-
rectly on a raw audio waveform. In particular, for a wave-
form modeled by x = {x1, ..., xT } (representing speech,
music, etc.), the joint probability of the entire waveform
can be factorized as a product of conditional probabilities,
namely

p(x) =

T∏
t=1

p(xt|x1, ..., xt−1). (1)

The waveforms in WaveNet are typically represented as
8-bit audio, meaning that each xi can take on one of
256 possible values. The WaveNet model uses a deep
learning architecture to model the conditional probabilities
p(xt|x1, ..., xt−1). The model is trained by predicting values
of the waveform at step t and comparing them to the true
value xt, using cross-entropy as a loss function; thus, the
problem simply becomes a multi-class classification prob-
lem (with 256 classes) for each step in the waveform. The
architecture of the conditional probabilities utilizes causal
convolutions, similar to masked convolutions used in Pixel-
RNN and similar image generation networks (van den Oord,
Kalchbrenner, and Kavukcuoglu 2016). Causal convolutions
ensure that the prediction for time step t only depends on the
predictions for previous time steps. Furthermore, the causal
convolutions are dilated; this is a convolution where the fil-
ter is applied over an area larger than its length by skipping
particular input values, as shown in Figure 1. In addition to
the dilated causal convolutions, each layer features gated ac-
tivation units and residual connections, as well as skip con-
nections to the final output layers.

Figure 1: A stack of dilated causal convolutions as used by
WaveNet, reproduced from (van den Oord et al. 2016).

Generative Symbolic Audio Models
Most deep learning systems for automatic music generation
are based on symbolic representations of the music. One of
the most popular of these is MIDI (Musical Instrument Dig-
ital Interface)3, which is a standard format and protocol for
electronic music. Other representations that have been uti-
lized include the piano roll representation (Huang and Wu
2016)—inspired by player piano music rolls—text repre-
sentations (e.g., ABC notation4), chord representations (e.g.,
Chord2Vec (Madjiheurem, Qu, and Walder 2016)), and lead
sheet representations. A typical scenario for producing mu-
sic in such models is to train and generate on the same
type of representation; for instance, one may train on a set
of MIDI files that encode melodies, and then generate new
MIDI melodies from the learned model.

There are now a very large number of existing deep
learning symbolic music systems (Briot, Hadjeres, and Pa-
chet 2018), including models that are based on recurrent
neural networks (RNNs), many of which use Long Short
Term Memory (LSTM) components. Some of the models
using RNNs include the Blues Melody Generation Sys-
tem (Eck and Schmidhuber 2002), DeepBach (Hadjeres,
Pachet, and Nielsen 2017), the CONCERT system (Mozer
1994), the Celtic Melody Generation system (Sturm et al.
2016), the biaxial LSTM model (Johnson 2017), and sev-
eral methods that combine RNNs with restricted Boltzmann
machines (Boulanger-Lewandowski, Bengio, and Vincent
2012; Goel, Vohra, and Sahoo 2014; Chung et al. 2014;
Lyu et al. 2015).

Architecture
We first discuss our symbolic method for generating unique
melodies, then detail the modifications to the raw audio
model for compatibility with these generations. Modifying
the architecture involves working with both symbolic and
raw audio data in harmony.

Melody Generation with LSTM Networks
A traditional approach to learning temporal dependencies in
data is to use a Recurrent Neural Network (RNN). The gen-
eral topology of a recurrent network is such that the output
of the previous time step is fed as input to the next, allow-
ing the network to learn sequential dependencies in the data.

3https://www.midi.org/specifications
4http://abcnotation.com
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However, in practice, RNNs do not perform well when the
learning sequences have long term temporal dependence due
to issues such as exploding gradients (Y. Bengio and Fras-
coni 1994). This is especially true for music, as properties
such as key signature and time signature may be constant
throughout a piece of music.

Long-Short Term Memory models are designed to over-
come this issue by providing a mechanism that is able to
both store and discard the information saved about the pre-
vious steps, limiting the accumulated error using Constant
Error Carousels (Hochreiter and Schmidhuber 2006). This
error carousel serves as a flow of cell state through the recur-
rent cells of the network, encoding the dependence on pre-
vious time steps. This state is modified by each unit through
a gated structure, allowing the network to selectively retain
important dependence data in the cell state.

Recently, applications of LSTMs specific to music gen-
eration, such as the biaxial LSTM, have been explored that
utilize a pair of tied, parallel networks (Johnson 2017). This
approach imposes an LSTM in the temporal dimension, and
another in the pitch dimension at each time step. This allows
the model to not only learn the overall structure of the mu-
sic, but also captures the inter-dependence of the notes being
played at any given timestep.

We explore the sequential combination of the symbolic
and raw audio models to produce structured raw audio out-
put. We train a biaxial LSTM model on the training data of
a particular genre, and then feed the generations from this
trained model into the raw audio network.

Conditioning with Raw Audio Models

Figure 2: An overview of the model architecture, showing
the local conditioning time series as an extra input.

Once a learned symbolic melody is obtained, we treat it as
a second time series within our raw audio model (analogous
to using a second time series with a desired text to be spoken
in the speech domain). In particular, in the WaveNet model,
each layer features a gated activation unit. If x is the raw
audio input vector, then at each layer k, it passes through the
following gated activation unit:

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x), (2)

Instrument Minutes Labels
Piano 1,346 794,532
Violin 874 230,484
Cello 621 99,407

Solo Piano 917 576,471
Solo Violin 30 8,837
Solo Cello 49 10,876

Table 1: Statistics of the MusicNet dataset. (Thickstun, Har-
chaoui, and Kakade 2017)

where ∗ is a convolution operator, � is an elementwise mul-
tiplication operator, σ(·) is the sigmoid function, and the
Wf,k and Wg,k are learnable convolution filters. Following
WaveNet’s use of local conditioning, we can introduce a sec-
ond time series y (in this case from the LSTM model, to cap-
ture the long-term melody), and instead utilize the following
activation, effectively incorporating y as an extra input:

z = tanh(Wf,k ∗x+Vf,k ∗y)�σ(Wg,k ∗x+Vg,k ∗y), (3)

where V are learnable linear projections. By conditioning
on an extra time series input, we effectively guide the raw
audio generations to require certain characteristics; y influ-
ences the output at all timestamps.

In our modified WaveNet model, the y timeseries is the
upsampled MIDI embedding timeseries. In particular, LC
embeddings are 128-dimensional binary vectors where ones
correspond to note indicies that are being played at the cur-
rent time step. As with the audio timeseries, the LC embed-
dings first go through a layer of causal convolution to reduce
the number of dimensions from 128 down to 16, which are
then used in the dilation layers as the conditioning samples.
This reduces the computational requirement for the dilation
layers without reducing the note state information, as most
of the embeddings are zero for most timestamps.

Evaluation
As any generated piece of music can generally only be sub-
jectively evaluated by human listeners, it is challenging to
quantitatively evaluate the generations from our model. For
instance, to compare the outputs of two systems, one can
have a human listen to excerpts from both, and rate which
of the two sounds more natural (or whichever parameter
is desired to be evaluated). We plan to use such crowd-
sourced evaluation techniques (specifically, Amazon Me-
chanical Turk5) to compare our outputs with other systems;
however, for now, we evaluate our results in terms of the
complexity and structure of the musical outputs we have ob-
tained so far. Example results of generations, including re-
sults from our follow-up ISMIR paper, are posted on our
web page.6

Training Datasets
At training time, in addition to raw training audio, we must
also incorporate its underlying symbolic melody, perfectly

5https://www.mturk.com/mturk/
6http://people.bu.edu/bkulis/projects/music/index.html
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aligned with the raw audio at each timestep. The problem
of melody extraction in raw audio is still an active area of
research; due to a general lack of such annotated music, we
have experimented with multiple datasets, which we enu-
merate here.

We have utilized the Melodia algorithm (Salamon and
Gomez 2012) to generate training data. By automatically de-
tecting the pitch of a melody, the algorithm is able to piece
together symbolic data given a raw audio input. The algo-
rithm is centered around the idea of detecting pitch con-
tours, which are groups of pitch candidates arranged sequen-
tially using auditory streaming cues. However, the algorithm
only detects a song’s main melody; thus, the resulting sym-
bolic alignments were very sparse when multiple notes were
played at once in a song.

Experiments were also performed using the Saarland Mu-
sic Data (Müller et al. 2011). This dataset contains 50 pieces
of Western piano music with perfectly aligned MIDI se-
quences. Due to limited resources and our choice to focus
solely on cello in this work, extensive results from training
on this dataset were not generated.

We are currently exploring the use of the MusicNet
database for training (Thickstun, Harchaoui, and Kakade
2017), as this data features both raw audio as well as melodic
annotations. Other metadata is also included, such as the
composer of the piece, the instrument with which the com-
position is played, and each note’s position in the metri-
cal structure of the composition. The music is separated by
genre; there are over 900 minutes of solo piano alone, which
has proven to be very useful in training on only one instru-
ment. The details of this dataset are enumerated in Table 1.

Unconditioned Music Generation with WaveNet
The WaveNet model was designed mainly for speech appli-
cations, as it was deployed in the Google Assistant. Thus, we
preface our evaluation by first acknowledging the fact that
we originally tuned WaveNet for unstructured music gener-
ation. We tuned the model to generate music trained on solo
piano inputs (about 50 minutes of Chopin Nocturnes, from
the YouTube-8M dataset (Abu-El-Haija et al. 2016)), as well
as 350 songs of various genres of electronic music, obtained
from No Copyright Sounds7.

Upon training the model with multi-track electronic mu-
sic, we found the generations to be very noisy and usually
only containing information from a single instrument, such
as the bass line or drums. With complex, diverse training
data of this type, WaveNet does not generalize well. The mix
of lyrics and many different types of sounds in the music was
not consistent over the training data, which led to poor gen-
erations. There is a tradeoff between versatility of the trained
networks in the genres it can produce and the quality of said
generations.

In the case of training on single instruments, such as cello
and piano, we discovered that WaveNet models are capable
of producing complex musical generations without losing
instrumental quality as the number of generated samples in-
creases. The network is able to learn short-range dependen-

7https://www.youtube.com/user/NoCopyrightSounds

cies, including hammer action and simple chords. We found
that the generations maintain consistent emotion throughout.
However, they are unstructured and do not contain any long-
range temporal dependencies. Results that showcase these
techniques and attributes are available on our webpage.

Structure in Raw Audio Generations
Though it is challenging to quantitatively evaluate the struc-
turing ability of our conditioned model, we may attempt to
visualize a given output against its conditioning sequence
via a peak frequency spectrogram, as shown in Figure 3.

We note that for a given timestep, both the symbolic in-
put and the raw audio generation have similar power at their
respective frequencies, e.g. the color in the spectrogram in-
tensifies at similar timesteps throughout the song. This indi-
cates that our model is predicting samples in time with the
rhythm of the given raw audio.

The relative heights between peak frequencies are similar
for each piece of music, indicating that the frequency of the
output is changing in a similar way throughout the piece.
This indicates that the raw audio output closely follows the
dynamics of the conditioning signal.

The difference in overall vertical height of the spectro-
grams is due to the fact that the symbolic input was inter-
preted with a different instrument than the raw audio out-
put, and was played at a different overall frequency. We may
also note that even though multiple notes are being played
at the same time throughout the symbolic input, the raw au-
dio model does indicate sound at these frequencies at similar
timesteps (more softly, though, since the color is not as in-
tense).

This analysis generalizes to all of the pieces generated
with our model; we have successfully been able to transform
an unstructured model with little long-range dependency to
one with guided generations that exhibit certain characteris-
tics.

We are currently experimenting with and optimizing the
output of the model with the creative melody generation
from the LSTM. The results, further detailed in our follow-
up ISMIR paper, are posted on our webpage.

Conclusions and Future Work
In conclusion, we focus on developing a work-in-progress
model to combine raw and symbolic audio models for the
improvement of automatic music generation. Combining
two prevalent models allows us to take advantage of both
of their features; in the case of raw audio models, this is the
realistic sound and feel of the music, and in the case of sym-
bolic models, it is the complexity, structure, and long-range
dependency of the generations.

Our next steps to effectively move toward a hands-free,
creative raw audio music generator include successfully us-
ing the unique LSTM generations as a second time series
input to the WaveNet model. We showcase results of this
in our follow-up ISMIR paper (Manzelli et al. 2018). An
additional future modification of our approach could be to
merge the LSTM and WaveNet models to a coupled archi-
tecture. This would eliminate the need to synthesize MIDI
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Figure 3: The peak frequency spectrograms for the raw audio output of a cello model (top) and its conditioning signal, which
is a portion of the Happy Birthday melody played on chimes (middle). Despite the two waveforms sounding different, the
figure shows the similar structure of each spectrogram to the conditioning sequence (bottom). The audio files are posted at
https://ismir2018submissio.wixsite.com/music/music.

files, as well as the need for MIDI labels associated with the
raw audio training data.

The architecture proposed in this paper allows for a mod-
ular approach to automated music generation; our model as
it stands can inspire many future applications. For example,
multiple different instances of our model can be trained on
different genres of music, and generate based on a single
local conditioning series split among these networks. As a
result, the same melody can be reproduced in different gen-
res or instruments, and can be strung together to create ef-
fects such as a quartet or band. The key application here is
that this type of synchronized effect can be achieved with-
out awareness of the other networks, avoiding model inter-
dependence.

Additionally, the combination of our model with multiple
audio domains could also be implemented; specifically, this
would involve the integration of speech audio with music to
produce lyrics sung in tune with our realistic melody.
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