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ABSTRACT
Existing automatic music generation approaches that fea-
ture deep learning can be broadly classified into two types:
raw audio models and symbolic models. Symbolic mod-
els, which train and generate at the note level, are cur-
rently the more prevalent approach; these models can cap-
ture long-range dependencies of melodic structure, but fail
to grasp the nuances and richness of raw audio genera-
tions. Raw audio models, such as DeepMind’s WaveNet,
train directly on sampled audio waveforms, allowing them
to produce realistic-sounding, albeit unstructured music.
In this paper, we propose an automatic music generation
methodology combining both of these approaches to cre-
ate structured, realistic-sounding compositions. We con-
sider a Long Short Term Memory network to learn the
melodic structure of different styles of music, and then use
the unique symbolic generations from this model as a con-
ditioning input to a WaveNet-based raw audio generator,
creating a model for automatic, novel music. We then eval-
uate this approach by showcasing results of this work.

1. INTRODUCTION
The ability of deep neural networks to generate novel mu-
sical content has recently become a popular area of re-
search. Many variations of deep neural architectures have
generated pop ballads, 1 helped artists write melodies, 2

and even have been integrated into commercial music gen-
eration tools. 3

Current music generation methods are largely focused
on generating music at the note level, resulting in outputs
consisting of symbolic representations of music such as se-
quences of note numbers or MIDI-like streams of events.
These methods, such as those based on Long Short Term
Memory networks (LSTMs) and recurrent neural networks
(RNNs), are effective at capturing medium-scale effects
in music, can produce melodies with constraints such as
mood and tempo, and feature fast generation times [14,22].

1 http://www.flow-machines.com/
2 https://www.ampermusic.com/
3 https://www.jukedeck.com/
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In order to create sound, these methods often require an in-
termediate step of interpretation of the output by humans,
where the symbolic representation transitions to an audio
output in some way.

An alternative is to train on and produce raw audio
waveforms directly by adapting speech synthesis models,
resulting in a richer palette of potential musical outputs,
albeit at a higher computational cost. WaveNet, a model
developed at DeepMind primarily targeted towards speech
applications, has been applied directly to music; the model
is trained to predict the next sample of 8-bit audio (typi-
cally sampled at 16 kHz) given the previous samples [25].
Initially, this was shown to produce rich, unique piano
music when trained on raw piano samples. Follow-up
work has developed faster generation times [16], generated
synthetic vocals for music using WaveNet-based architec-
tures [3], and has been used to generate novel sounds and
instruments [8]. This approach to music generation, while
very new, shows tremendous potential for music genera-
tion tools. However, while WaveNet produces more real-
istic sounds, the model does not handle medium or long-
range dependencies such as melody or global structure in
music. The music is expressive and novel, yet sounds un-
practiced in its lack of musical structure.

Nonetheless, raw audio models show great potential for
the future of automatic music. Despite the expressive na-
ture of some advanced symbolic models, those methods re-
quire constraints such as mood and tempo to generate cor-
responding symbolic output [22]. While these constraints
can be desirable in some cases, we express interest in gen-
erating structured raw audio directly due to the flexibility
and versatility that raw audio provides; with no specifica-
tion, these models are able to learn to generate expression
and mood directly from the waveforms they are trained on.
We believe that raw audio models are a step towards less
guided, unsupervised music generation, since they are un-
constrained in this way. With such tools for generating raw
audio, one can imagine a number of new applications, such
as the ability to edit existing raw audio in various ways.

Thus, we explore the combination of raw audio and
symbolic approaches, opening the door to a host of new
possibilities for music generation tools. In particular,
we train a biaxial Long Short Term Memory network
to create novel symbolic melodies, and then treat these
melodies as an extra conditioning input to a WaveNet-
based model. Consequently, the LSTM model allows us
to represent long-range melodic structure in the music,
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while the WaveNet-based component interprets and ex-
pands upon the generated melodic structure in raw audio
form. This serves to both eliminate the intermediate inter-
pretation step of the symbolic representations and provide
structure to the output of the raw audio model, while main-
taining the aforementioned desirable properties of both
models.

We first discuss the tuning of the original unconditioned
WaveNet model to produce music of different instruments,
styles, and genres. Once we have tuned this model appro-
priately, we then discuss our extension to the conditioned
case, where we add a local conditioning technique to the
raw audio model. This method is comparable to using a
text-to-speech method within a speech synthesis model.
We first generate audio from the conditioned raw audio
model using well-known melodies (e.g., a C major scale
and the Happy Birthday melody) after training on the Mu-
sicNet dataset [24]. We also discuss an application of our
technique to editing existing raw audio music by changing
some of the underlying notes and re-generating selections
of audio. Then, we incorporate the LSTM generations as a
unique symbolic component. We demonstrate results of
training both the LSTM and our conditioned WaveNet-
based model on corresponding training data, as well as
showcase and evaluate generations of realistic raw audio
melodies by using the output of the LSTM as a unique lo-
cal conditioning time series to the WaveNet model.

This paper is an extension of an earlier work originally
published as a workshop paper [19]. We augment that
work-in-progress model in many aspects, including more
concrete results, stronger evaluation, and new applications.

2. BACKGROUND
We elaborate on two prevalent deep learning models for
music generation, namely raw audio models and symbolic
models.

2.1 Raw Audio Models

Initial efforts to generate raw audio involved models used
primarily for text generation, such as char-rnn [15] and
LSTMs. Raw audio generations from these networks are
often noisy and unstructured; they are limited in their ca-
pacity to abstract higher level representations of raw audio,
mainly due to problems with overfitting [21].

In 2016, DeepMind introduced WaveNet [25], a gen-
erative model for general raw audio, designed mainly for
speech applications. At a high level, WaveNet is a deep
learning architecture that operates directly on a raw audio
waveform. In particular, for a waveform modeled by a vec-
tor x = {x1, ..., xT } (representing speech, music, etc.), the
joint probability of the entire waveform is factorized as a
product of conditional probabilities, namely

p(x) = p(x1)
T∏

t=2

p(xt|x1, ..., xt−1). (1)

The waveforms in WaveNet are typically represented as
8-bit audio, meaning that each xi can take on one of

Figure 1: A stack of dilated causal convolutions as used
by WaveNet, reproduced from [25].

256 possible values. The WaveNet model uses a deep
neural network to model the conditional probabilities
p(xt|x1, ..., xt−1). The model is trained by predicting val-
ues of the waveform at step t and comparing them to the
true value xt, using cross-entropy as a loss function; thus,
the problem simply becomes a multi-class classification
problem (with 256 classes) for each timestep in the wave-
form.

The modeling of conditional probabilities in WaveNet
utilizes causal convolutions, similar to masked convolu-
tions used in PixelRNN and similar image generation net-
works [7]. Causal convolutions ensure that the prediction
for time step t only depends on the predictions for previ-
ous timesteps. Furthermore, the causal convolutions are
dilated; these are convolutions where the filter is applied
over an area larger than its length by skipping particular
input values, as shown in Figure 1. In addition to dilated
causal convolutions, each layer features gated activation
units and residual connections, as well as skip connections
to the final output layers.

2.2 Symbolic Audio Models

Most deep learning approaches for automatic music gen-
eration are based on symbolic representations of the mu-
sic. MIDI (Musical Instrument Digital Interface), 4 for ex-
ample, is a ubiquitous standard for file format and proto-
col specification for symbolic representation and transmis-
sion. Other representations that have been utilized include
the piano roll representation [13]—inspired by player pi-
ano music rolls—text representations (e.g., ABC nota-
tion 5 ), chord representations (e.g., Chord2Vec [18]), and
lead sheet representations. A typical scenario for produc-
ing music in such models is to train and generate on the
same type of representation; for instance, one may train on
a set of MIDI files that encode melodies, and then generate
new MIDI melodies from the learned model. These mod-
els attempt to capture the aspect of long-range dependency
in music.

A traditional approach to learning temporal dependen-
cies in data is to use recurrent neural networks (RNNs). A
recurrent neural network receives a timestep of a series xt
along with a hidden state ht as input. It outputs yt, the
model output at that timestep, and computes ht+1, the hid-
den state at the next timestep. RNNs take advantage of

4 https://www.midi.org/specifications
5 http://abcnotation.com
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Figure 2: A representation of a biaxial LSTM network.
Note that the first two layers have connections across
timesteps, while the last two layers have recurrent connec-
tions across notes [14].

this hidden state to store some information from the pre-
vious timesteps. In practice, vanilla RNNs do not perform
well when training sequences have long temporal depen-
dencies due to issues of vanishing/exploding gradients [2].
This is especially true for music, as properties such as key
signature and time signature may be constant throughout a
composition.

Long Short Term Memory networks are a variant of
RNNs that have proven useful in symbolic music gener-
ation systems. LSTM networks modify the way memory
information is stored in RNNs by introducing another unit
to the original RNN network: the cell state, ct, where the
flow of information is controlled by various gates. LSTMs
are designed such that the interaction between the cell
state and the hidden state prevents the issue of vanish-
ing/exploding gradients [10, 12].

There are numerous existing deep learning symbolic
music generation approaches [5], including models that
are based on RNNs, many of which use an LSTM as a
key component of the model. Some notable examples
include DeepBach [11], the CONCERT system [20], the
Celtic Melody Generation system [23] and the Biaxial
LSTM model [14]. Additionally, some approaches com-
bine RNNs with restricted Boltzmann machines [4,6,9,17].

3. ARCHITECTURE
We first discuss our symbolic method for generating
unique melodies, then detail the modifications to the raw
audio model for compatibility with these generations.
Modifying the architecture involves working with both
symbolic and raw audio data in harmony.

3.1 Unique Symbolic Melody Generation with LSTM
Networks

Recently, applications of LSTMs specific to music genera-
tion, such as the biaxial LSTM, have been implemented
and explored. This model utilizes a pair of tied, paral-
lel networks to impose LSTMs both in the temporal di-
mension and the pitch dimension at each timestep. Each
note has its own network instance at each timestep, and

Figure 3: An overview of the model architecture, showing
the local conditioning time series as an extra input.

receives input of the MIDI note number, pitchclass, beat,
and information on surrounding notes and notes at previous
timesteps. This information first passes through two lay-
ers with connections across timesteps, and then two layers
with connections across notes, detailed in Figure 2. This
combination of note dependency and temporal dependency
allow the model to not only learn the overall instrumen-
tal and temporal structure of the music, but also capture
the interdependence of the notes being played at any given
timestep [14].

We explore the sequential combination of the symbolic
and raw audio models to produce structured raw audio out-
put. We train a biaxial LSTM model on the MIDI files of
a particular genre of music as training data, and then feed
the MIDI generations from this trained model into the raw
audio generator model.

3.2 Local Conditioning with Raw Audio Models

Once a learned symbolic melody is obtained, we treat it
as a second time series within our raw audio model (anal-
ogous to using a second time series with a desired text
to be spoken in the speech domain). In particular, in the
WaveNet model, each layer features a gated activation unit.
If x is the raw audio input vector, then at each layer k, it
passes through the following gated activation unit:

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x), (2)

where ∗ is a convolution operator, � is an elementwise
multiplication operator, σ(·) is the sigmoid function, and
the Wf,k and Wg,k are learnable convolution filters. Fol-
lowing WaveNet’s use of local conditioning, we can intro-
duce a second time series y (in this case from the LSTM
model, to capture the long-term melody), and instead uti-
lize the following activation, effectively incorporating y as
an extra input:

z = tanh(Wf,k∗x+Vf,k∗y)�σ(Wg,k∗x+Vg,k∗y), (3)

where V are learnable linear projections. By condition-
ing on an extra time series input, we effectively guide the
raw audio generations to require certain characteristics; y
influences the output at all timestamps.
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Instrument Minutes Labels
Piano 1,346 794,532
Violin 874 230,484
Cello 621 99,407

Solo Piano 917 576,471
Solo Violin 30 8,837
Solo Cello 49 10,876

Table 1: Statistics of the MusicNet dataset. [24]

In our modified WaveNet model, the second time series
y is the upsampled MIDI embedding of the local condition-
ing time series. In particular, local conditioning (LC) em-
beddings are 128-dimensional binary vectors, where ones
correspond to note indices that are being played at the cur-
rent timestep. As with the audio time series, the LC em-
beddings first go through a layer of causal convolutions
to reduce the number of dimensions from 128 to 16, which
are then used in the dilation layers as the conditioning sam-
ples. This reduces the computational requirement for the
dilation layers without reducing the note state information,
as most of the embeddings are zero for most timestamps.
This process along with the surrounding architecture is
shown in Figure 3.

3.3 Hyperparameter Tuning

Table 2 enumerates the hyperparameters used in the
WaveNet-based conditioned model to obtain our results.
We note that the conditioned model needs only 30 dila-
tion layers as compared to the 50 we had used in the un-
conditioned network. Training with these parameters gave
us comparable results as compared to the unconditioned
model in terms of the timbre of instruments and other nu-
ances in generations. This indicates that the decrease in
parameters is offset by the extra information provided by
the conditioning time series.

4. EMPIRICAL EVALUATION
Example results of generations from our models are posted
on our web page. 6

One of the most challenging tasks in automated music
generation is evaluating the resulting music. Any gener-
ated piece of music can generally only be subjectively eval-
uated by human listeners. Here, we qualitatively evaluate
our results to the best of our ability, but leave the results
on our web page for the reader to subjectively evaluate.
We additionally quantify our results by comparing the re-
sulting loss functions of the unconditioned and conditioned
raw audio models. Then, we evaluate the structural compo-
nent by computing the cross-correlation between the spec-
trogram of the generated raw audio and conditioning input.

4.1 Training Datasets and Loss Analysis

At training time, in addition to raw training audio, we must
also incorporate its underlying symbolic melody, perfectly

6 http://people.bu.edu/bkulis/projects/music/index.html

Hyperparameter Value
Initial Filter Width 32
Dilation Filter Width 2
Dilation Layers 30
Residual Channels 32
Dilation Channels 32
Skip Channels 512
Initial LC Channels 128
Dilation LC Channels 16
Quantization Channels 128

Table 2: WaveNet hyperparameters used for training of the
conditioned network.

aligned with the raw audio at each timestep. The problem
of melody extraction in raw audio is still an active area of
research; due to a general lack of such annotated music,
we have experimented with multiple datasets.

Primarily, we have been exploring use of the recently-
released MusicNet database for training [24], as this data
features both raw audio as well as melodic annotations.
Other metadata is also included, such as the composer of
the piece, the instrument with which the composition is
played, and each note’s position in the metrical structure
of the composition. The music is separated by genre; there
are over 900 minutes of solo piano alone, which has proven
to be very useful in training on only one instrument. The
different genres provide many different options for train-
ing. Table 1 shows some other statistics of the MusicNet
dataset.

After training with these datasets, we have found that
the loss for the unconditioned and conditioned WaveNet
models follows our expectation of the conditioned model
exhibiting a lower cross-entropy training loss than the un-
conditioned model. This is due to the additional embed-
ding information provided along with the audio in the con-
ditioned case. Figure 5 shows the loss for two WaveNet
models trained on the MusicNet cello dataset over 100,000
iterations, illustrating this decreased loss for the condi-
tioned model.

4.2 Unconditioned Music Generation with WaveNet

We preface the evaluation of our musical results by ac-
knowledging the fact that we first tuned WaveNet for
unstructured music generation, as most applications of
WaveNet have explored speech applications. Here we
worked in the unconditioned case, i.e., no second time se-
ries was input to the network. We tuned the model to gener-
ate music trained on solo piano inputs (about 50 minutes of
the Chopin nocturnes, from the YouTube-8M dataset [1]),
as well as 350 songs of various genres of electronic dance
music, obtained from No Copyright Sounds 7 .

We found that WaveNet models are capable of produc-
ing lengthy, complex musical generations without losing
instrumental quality for solo instrumental training data.
The network is able to learn short-range dependencies, in-

7 https://www.youtube.com/user/NoCopyrightSounds
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Figure 4: Example MIDI generation from the biaxial
LSTM trained on cello music, visualized as sheet music.

Figure 5: Cross entropy loss for the conditioned (solid
green) and unconditioned (dotted orange) WaveNet mod-
els over the first 100,000 training iterations, illustrating the
lower training loss of the conditioned model.

cluding hammer action and simple chords. Although gen-
erations may have a consistent energy, they are unstruc-
tured and do not contain any long-range temporal depen-
dencies. Results that showcase these techniques and at-
tributes are available on our webpage.

4.3 Structure in Raw Audio Generations

We evaluate the structuring ability of our conditioned raw
audio model for a generation based on how closely it fol-
lows the conditioning signal it was given, first using pop-
ular existing melodies, then the unique LSTM genera-
tions. We use cross-correlation as a quantitative evalua-
tion method. We also acknowledge the applications of our
model to edit existing raw audio.

4.3.1 Raw Audio from Existing Melodies

We evaluate our approach first by generating raw audio
from popular existing melodies, by giving our conditioned
model a second time series input of the Happy Birthday
melody and a C major scale. Since we are familiar with
these melodies, they are easier to evaluate by ear.

Initial versions of the model evaluated in this way were
trained on the MusicNet cello dataset. The generated
raw audio follows the conditioning input, the recognizable
Happy Birthday melody and C major scale, in a cello tim-
bre. The results of these generations are uploaded on our
webpage.

4.3.2 Raw Audio From Unique LSTM Generations

After generating novel melodies from the LSTM, we pro-
duced corresponding output from our conditioned model.
Since it is difficult to qualitatively evaluate such melodies

(a) Unedited training sample from the MusicNet dataset.

(b) Slightly modified training sample.

Figure 6: MIDI representations of a sample from the Mu-
sicNet solo cello dataset, visualized as sheet music; (b) is a
slightly modified version of (a), the original training sam-
ple. We use these samples to showcase the ability of our
model to “edit” raw audio.

by ear due to unfamiliarity with the melody, we are inter-
ested in evaluating how accurately the conditioned model
follows a novel melody quantitatively. We evaluate our re-
sults by computing the cross-correlation between the MIDI
sequence and the spectrogram of the generated raw au-
dio as shown in Figure 7. Due to the sparsity of both the
spectrogram and the MIDI file in the frequency dimension,
we decided to calculate the cross-correlation between one-
dimensional representations of the two time series. We
chose the frequency of the highest note in the MIDI at each
timestep as its one-dimensional representation. In the case
of the raw audio, we chose the most active frequency in
its spectrogram at each timestep. We acknowledge some
weakness in this approach, since some information is lost
by reducing the dimensionality of both time series.

Cross-correlation is the “sliding dot product” of two
time series — a measure of linear similarity as a function
of the displacement of one series relative to the other. In
this instance, the cross-correlation between the MIDI se-
quence and the corresponding raw audio peaks at delay 0
and is equal to 0.3. In order to assure that this correlation
is not due to chance, we have additionally calculated the
cross-correlation between the generated raw audio and 50
different MIDI sequences in the same dataset. In Figure 7,
we can see that the cross-correlation curve stays above the
other random correlation curves in the the area around de-
lay 0. This shows that the correlation found is not by
chance, and the raw audio output follows the conditioning
vector appropriately.

This analysis generalizes to any piece generated with
our model; we have successfully been able to transform
an unstructured model with little long-range dependency
to one with generations that exhibit certain characteristics.

4.3.3 Editing Existing Raw Audio

In addition, we explored the possibility of using our ap-
proach as a tool similar to a MIDI synthesizer, where we
first generate from an existing piece of a symbolic melody,
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Figure 7: Comparison of the novel LSTM-generated melody (top) and the corresponding raw audio output of the condi-
tioned model represented as a spectrogram (middle). The bottom plot shows the cross-correlation between the frequency of
the highest note of the MIDI and the most active frequency of raw audio from the WaveNet-based model, showing strong
conditioning from the MIDI on the generated audio.

in this case, from the training data. Then, we generate new
audio by making small changes to the MIDI, and evaluate
how the edits reflect in the generated audio. We experi-
ment with this with the goal of achieving a higher level of
fidelity to the audio itself rather using a synthesizer to re-
play the MIDI as audio, as that often forgoes the nuances
associated with raw audio.

Figure 6(a) and 6(b) respectively show a snippet of the
training data taken from the MusicNet cello dataset and the
small perturbations made to it, which were used to evalu-
ate this approach. The results posted on our webpage show
that the generated raw audio retains similar characteristics
between the original and the edited melody, while also in-
corporating the changes to the MIDI in an expressive way.

5. CONCLUSIONS AND FUTURE WORK
In conclusion, we focus on combining raw and symbolic
audio models for the improvement of automatic music gen-
eration. Combining two prevalent models allows us to take
advantage of both of their features; in the case of raw audio
models, this is the realistic sound and feel of the music, and
in the case of symbolic models, it is the complexity, struc-
ture, and long-range dependency of the generations.

Before continuing to improve our work, we first plan
to more thoroughly evaluate our current model using rat-
ings of human listeners. We will use crowdsourced evalua-
tion techniques (specifically, Amazon Mechanical Turk 8 )
to compare our outputs with other systems.

A future modification of our approach is to merge the
LSTM and WaveNet models to a coupled architecture.

8 https://www.mturk.com/mturk/

This joint model would eliminate the need to synthesize
MIDI files, as well as the need for MIDI labels aligned with
raw audio data. In essence, this adjustment would create a
true end-to-end automatic music generation model.

Additionally, DeepMind recently updated the WaveNet
model to improve generation speed by 1000 times over the
previous model, at 16 bits per sample and a sampling rate
of 24kHz [26]. We hope to investigate this new model to
develop real-time generation of novel, structured music,
which has many significant implications.

The potential results of our work could augment and
inspire many future applications. The combination of our
model with multiple audio domains could be implemented;
this could involve the integration of speech audio with mu-
sic to produce lyrics sung in tune with our realistic melody.

Even without the additional improvements considered
above, the architecture proposed in this paper allows for
a modular approach to automated music generation. Mul-
tiple different instances of our conditioned model can be
trained on different genres of music, and generate based
on a single local conditioning series in parallel. As a re-
sult, the same melody can be reproduced in different genres
or instruments, strung together to create effects such as a
quartet or a band. The key application here is that this type
of synchronized effect can be achieved without awareness
of the other networks, avoiding model interdependence.
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