
Online Linear Regression using Burg Entropy

Prateek Jain, Brian Kulis, and Inderjit Dhillon

Technical Report TR-07-08

University of Texas at Austin

Austin, TX 78712

February 14, 2007

Abstract

We consider the problem of online prediction with a linear model. In contrast to existing work in on-

line regression, which regularizes based on squared loss or KL-divergence, we regularize using divergences

arising from the Burg entropy. We demonstrate regret bounds for our resulting online gradient-descent

algorithm; to our knowledge, these are the first online bounds involving Burg entropy. We extend this

analysis to the matrix case, where our algorithm employs LogDet-based regularization, and discuss an

application to online metric learning. We demonstrate empirically that using Burg entropy for regular-

ization is useful in the presence of noisy data.

1 Introduction

Recently, online learning has received significant attention, and several recent results have demonstrated
strong provable online bounds. In the online linear regression problem, considered in this paper, the algorithm
receives an instance xt (xt ∈ ℜm

+) at time t and predicts ŷt = wt · xt; wt is the current model used by the
algorithm. We denote wi

t as the i-th component of the model at the t-th step. The error incurred at step t
is lt(wt) = (yt − ŷt)

2, where yt is the true/target distance, and the goal is to minimize the total loss over all
time steps

∑

t lt(wt).
If there is no correlation between the input xt and the output yt, then the cumulative loss of the

algorithm may be unbounded. Hence, online algorithms are traditionally compared to the performance of
the best possible offline solution, where all the input and output instances are provided beforehand. The
goal is to prove a relative loss bound on how the online algorithm compares to the optimal offline algorithm.
Given a T -trial sequence S = {(x1, y1), (x2, y2), . . . , (xT , yT)}, the optimal offline solution is given by

u =argmin
w

T∑

t=1

lt(w)

s.t. wi > 0 ∀ i

A typical approach to solving the online linear regression problem uses the standard gradient descent
method with regularization for minimizing the loss at each step. Specifically, the algorithm tries to minimize
the following function at each step:

U(w) =

Regularization Term
︷ ︸︸ ︷

D(w, wt) +ηt

Loss Term
︷ ︸︸ ︷

L(yt, w · xt), (1)

where ηt is learning rate at t-th step and d(w, wt) is some distance measure between the new weight vector
w and the current weight vector wt.

In the above objective function, the regularization term favors weight vectors which are “close” to the
current model wt, representing a tendency for conservativeness. On the other hand, the loss term is minimized

1

when w is updated to exactly satify yt = ŷt; hence the loss term has a tendency to satisfy target outputs for
recent examples. The tradeoff between these two quantities is handled by the learning rate ηt, an important
parameter in online learning problems.

The performance of any method following this approach will depend heavily on the choice of the regu-
larization term and the loss function. Kivinen et. al[6, 8] show that the performance of any regularization
term in turn depends heavily on the problem domain. For example, for sparse inputs, relative entropy as a
regularization term often works better than squared Euclidean distance. For dense inputs, relative entropy’s
performance is generally very poor compared to that of squared Euclidean distance.

In this paper, we study the performance of online linear regression when the Burg entropy is considered
as the regularization term:

DBurg(wt+1, wt) =
N∑

i=1

(
wi

t+1

wi
t

− log

(
wi

t+1

wi
t

))

.

The relative Burg entropy (or Itakura-Saito distance) is a special case of a Bregman divergence, and such
measures have been shown to be useful distance measures for various machine learning tasks [1] (relative
entropy and squared Euclidean distance are other special cases of Bregman divergences). The Burg entropy in
particular has recently been shown to be useful for matrix approximations and kernel learning [7]. Our study
of Burg entropy is also motivated by the fact that online information-theoretic metric learning reduces to
online linear regression problem with the LogDet divergence—the natural generalization of the Burg entropy
as regularization term [3]. The results in this paper complement those of our work on information-theoretic
metric learning.

We present an algorithm for using Burg relative entropy for regularization and prove an associated regret
bound. We also generalize the above approach to the matrix case when the input matrices are rank-one;
this is precisely the case needed for information-theoretic metric learning. In section 5, we empirically show
how the Burg entropy performs compared to other standard regularization terms.

2 The Vector Case

In this study, we select the Bregman divergence corresponding to the Burg entropy as our regularization
term for (1):

DBurg(wt+1, wt) =

N∑

i=1

(
wi

t+1

wi
t

− log

(
wi

t+1

wi
t

))

.

We derive Algorithm 1 from standard gradient descent; in particular, if we differentiate U(w), we obtain the
update given as (2) in Algorithm 1.

Algorithm 1 Burg Gradient (BG) Algorithm

1: Initialize: Set ηt = 1
4mR2 and wi

0 = 1
N

, ∀ i.
2: Prediction: Upon receiving the t-th instance xt, give the prediction ŷt = wt · xt.
3: Update: Upon receiving the t-th outcome yt, update the weights according to the rule,

wi
t+1 = ((wi

t)
−1 + 2ηt(ŷt − yt)x

i
t)

−1, (2)

where

ηt =







nt−1 if ŷt − yt > 0

min

(

nt−1,
1

−2(ŷt−yt)xi

t

(
1

wi

t

− 1
))

if ŷt − yt < 0.
(3)

Note that the divergence DBurg is only defined over positive-valued weight vectors. To maintain positivity,
we use an adaptive learning rate ηt, which guarantees that the resulting vector w is positive. Assuming
ηt−1 > 0, then ηt > 0 since ηt is the minimum of two positive quantities. Also, if ŷt − yt > 0 then clearly

2

wt+1 > 0 (assuming wt > 0). On the other hand, if ŷt − yt < 0, then since ηt ≤ 1
−2(ŷt−yt)xi

t

(
1

wi

t

− 1
)

, we

can conclude that wt+1 > 0. Hence, we maintain positivity.

2.1 Regret Bounds

Now we demonstrate regret bounds for the proposed algorithm. Let the total loss of Algorithm 1 be LossBG =
∑

t lt(wt), and let Lossu =
∑

t lt(u) be the loss of the best offline solution. First we bound the loss of the
algorithm at a single trial in terms of the loss of a comparison vector u at that trial and the progress of the
algorithm towards u.

Lemma 1.

at(ŷt − yt)
2 − bt(u · xt − yt)

2 ≤ DBurg(u, wt) − DBurg(u, wt+1),

where at and bt are positive constants and u is the optimal offline solution.

Proof.

DBurg(u, wt) − DBurg(u, wt+1) =

N∑

i=1

(

ui

(
1

wi
t

−
1

wi
t+1

)

+ ln
wi

t

wi
t+1

)

= −2ηt(ŷt − yt)

N∑

i=1

uixi
t +

N∑

i=1

ln(1 + 2ηt(ŷt − yt)w
i
tx

i
t)

= −2ηt(ŷt − yt)u · xt +

N∑

i=1

ln(1 + 2ηt(ŷt − yt)w
i
tx

i
t).

Consider the following two cases:

1. ŷt − yt ≥ 0: Since wi
t > 0 and xi

t > 0, it follows that 2ηt(ŷt − yt)w
i
tx

i
t ≥ 0.

2. ŷt − yt < 0: Since ηt < 1
−2(ŷt−yt)xi

t

(
1

wi

t

− 1
)

, it follows that 2ηt(ŷt − yt)w
i
tx

i
t > 1

wi

t

− 1. Now, wi
t > 0

and so 2ηt(ŷt − yt)w
i
tx

i
t > −1.

Thus, in either case, 2ηt(ŷt − yt)w
i
tx

i
t > −1. We can therefore apply the inequality

ln(1 + z) ≥ z − z2/2,

which holds for all z > −1. Hence

DBurg(u, wt) − DBurg(u, wt+1) ≥ −2ηt(ŷt − yt)u · xt +

N∑

i=1

(
2ηt(ŷt − yt)w

i
tx

i
t − 2η2

t (ŷt − yt)
2(wi

tx
i
t)

2
)
.

Assume xi
t ≤ R and

∑N
i=1 wi

t ≤ m; the above inequality simplifies to

DBurg(u, wt) − DBurg(u, wt+1) ≥ −2ηt(ŷt − yt)u · xt + 2ηt(ŷt − yt)ŷt − 2η2
t (ŷt − yt)

2mR2.

Let r = u · xt. Proving the lemma amounts to showing that

DBurg(u, wt) − DBurg(u, wt+1) ≥ −2ηt(ŷt − yt)r + 2ηt(ŷt − yt)ŷt − 2η2
t (ŷt − yt)

2mR2 (4)

≥ at(ŷt − yt)
2 − bt(r − yt)

2, (5)

for some positive constants a and b. Consider the function

F (r) = at(ŷt − yt)
2 − bt(r − yt)

2 + 2ηt(ŷt − yt)r − 2ηt(ŷt − yt)ŷt + 2η2
t (ŷt − yt)

2mR2.

Equation 5 is equivalent to F (r) ≤ 0, ∀r. It can be easily seen that F (r) is maximized when r = yt+
ηt

bt

(ŷt−yt).
Substituting for r in F (r) and simplifying, we get:

at(ŷt − yt)
2 +

η2
t

bt

(ŷt − yt)
2 − 2ηt(ŷt − yt)

2 + 2η2
t (ŷt − yt)

2mR2.

3

Hence, we need to prove that

0 ≥ at(ŷt − yt)
2 +

η2
t

bt

(ŷt − yt)
2 − 2ηt(ŷt − yt)

2 + 2η2
t (ŷt − yt)

2mR2.

Since (ŷt − yt)
2 ≥ 0, this amounts to showing

0 ≥ atbt + η2
t − 2ηtbt + 2η2

t mR2bt = Q(ηt).

Now, Q(ηt) is minimized for ηt = bt

1+2mR2bt

, which implies bt = ηt

1−2ηtmR2 . Since, ηt ≤ η0 = 1
4mR2 , we know

that bt > 0. Q(ηt) < 0 iff at ≤ bt

1+2mR2bt

= ηt. Hence, for 0 ≤ at ≤ ηt and bt = ηt

1−2ηtmR2 , Lemma 1
holds.

Using Lemma 1, we can sum the loss over all time steps to get an overall bound on the loss of the Burg
entropy-based online learning algorithm.

Theorem 1.

LBG ≤
1

2ηT mR2
Lu +

1

ηT

DBurg(u,w0),

where LBG is the loss incurred by the Burg Gradient descent algorithm and Lu is the loss incurred by the

optimal offline algorithm.

Proof. By Lemma 1, for each trial t,

ηt(ŷt − yt)
2 −

ηt

1 − 2ηtmR2
(u · xt − yt)

2 ≤ DBurg(u, wt) − DBurg(u, wt+1).

Hence, adding over all trials we get

T∑

t=1

ηt(ŷt − yt)
2 ≤

T∑

t=1

ηt

1 − 2ηtmR2
(u · xt − yt)

2 + DBurg(u, w0) − DBurg(u, wT)

Thus, since ηt ≤ ηT for all t, we have:

LBG ≤
1

2ηT mR2
Lu +

1

ηT

DBurg(u,w0).

Note that similar bounds can be obtained using the framework presented in Gordon[5], but the resulting
bound is substantially weaker than our bound and the proof is much more involved.

3 The Matrix Case

In the matrix case, at the t-th step, the algorithm receives an instance Xt (Xt ∈ ℜm×m
+) and predicts

ŷt = tr(WtXt). Wt is the current model used by the algorithm. The error incurred at the t-th step is
lt(Wt) = (yt − ŷt)

2.
Similarly to the vector case, for a given T -trial sequence S = {(X1, y1), (X2, y2), . . . , (XT , yT)}, the

optimal offline solution is given by

U =argmin
W

T∑

t=1

lt(W)

s.t. W ≻ 0.

As a result, the goal here is to compare the loss of the online algorithm with the optimal offline solution,
just as in the vector case. For the matrix case, we consider the LogDet divergence as the regularization in
the objective. The LogDet divergence is the generalization of DBurg to matrices, given by

Dld(W, Wt) = tr(WW−1
t) − log det(WW−1

t).

4

3.1 Rank-One Input

We consider the special case where each input Xt is a rank-1 matrix. This assumption holds in the case
of information-theoretic metric learning (discussed later), where the inputs are rank-one constraints. We
further assume that input is symmetric; thus, the input matrix Xt can be written as

Xt = ztz
T
t .

Using LogDet as the regularization term, we derive Algorithm 2 analogously as in the vector case. We set ηt

carefully at each step so that the algorithm ensures positive definiteness of the weight matrix Wt. Lemma 2
proves this invariant.

Algorithm 2 Matrix Burg Gradient (BG) Algorithm

1: Initialize: Set ηt = 1
4R2 and W0 = 1

N
I, ∀ i.

2: Prediction: Upon receiving the t-th instance Xt, give the prediction ŷt = tr(WtXt).
3: Update: Upon receiving the t-th outcome yt, update the weights according to the rule

Wt+1 =
(
W−1

t + 2ηt(ŷt − yt)Xt

)−1
, (6)

where

ηt =







nt−1 if ŷt − yt > 0

min

(

nt−1,
1

2(yt−ŷt)

(
1

tr((I+(W−1

t
−I)−1)WtXt)

))

if ŷt − yt < 0.
(7)

Lemma 2. Algorithm 2 preserves the invariant 0 ≺ Wt ≺ I.

Proof. We prove this by induction over t. The base case holds trivially for N > 1. By the induction
hypothesis, 0 ≺ Wt ≺ I. Assume Xt = zz

T as Xt is a symmetric positive definite rank-one matrix. Thus,
using the update rule and the Sherman Morrison-Woodbury formula[4]:

Wt+1 =Wt −
2ηt(ŷt − yt)Wtzz

T Wt

1 + 2ηt(ŷt − yt)zT Wtz
. (8)

We break up the proof into the following two cases:

Case 1. ŷt − yt ≥ 0: Consider the update Wt+1 =
(
W−1

t + 2ηt(ŷt − yt)Xt

)−1
. Since ηt > 0 and ŷt − yt > 0,

then 2ηt(ŷt − yt)Xt ≻ 0. Now, W−1
t+1 is sum of two symmetric positive definite matrices, and so Wt+1 is

positive definite.
Using Equation 8,

I − Wt+1 = I − Wt +
2ηt(ŷt − yt)Wtzz

T Wt

1 + 2ηt(ŷt − yt)zT Wtz
.

Since, Wt is symmetric,
Wtzz

T Wt = Wtzz
T WT

t = vv
T ≻ 0,

where v = Wz. Also, ηt > 0 and ŷt − yt > 0, and thus 2ηt(ŷt−yt)Wtzz
T Wt

1+2ηt(ŷt−yt)zT Wtz
≻ 0. Furthermore, Wt ≺ I, and so

I −Wt ≻ 0. Thus, I −Wt+1 is sum of two symmetric positive definite matrices, implying I −Wt+1 ≻ 0. We
conclude that Wt+1 ≺ I.

Case 2. ŷt − yt < 0: By Equation 8,

Wt+1 = Wt −
2ηt(ŷt − yt)Wtzz

T Wt

1 + 2ηt(ŷt − yt)zT Wtz

= Wt +
2ηt(yt − ŷt)Wtzz

T Wt

1 − 2ηt(yt − ŷt)zT Wtz
.

5

The update rule guarantees that ηt < 1
2(yt−ŷt)tr(WtXt)

. Since

tr(WtXt) = tr(Wtzz
T) = tr(zT Wtz) = z

T Wtz, (9)

we know that 1 − 2ηt(yt − ŷt)z
T Wtz > 0, implying that Wt+1 is sum of two positive definite matrices hence

Wt+1 ≻ 0. Write Wt as its eigendecomposition Wt = QΣQT . Since Wt is positive definite matrix, Σ is a
diagonal matrix with positive diagonal. Using this decomposition, the update for Wt+1 is expressed as

Wt+1 =QΣQT −
2ηt(ŷt − y)QΣQT

zz
T QΣQT

1 + 2ηt(ŷt − y)zT QΣQT z
. (10)

Since Wt ≺ I, then I − Σ ≻ 0. Using Equation 10, we have that

I − Wt+1 = I − QΣQT −
2ηt(yt − ŷt)QΣQT

zz
T QΣQT

1 + 2ηt(ŷt − yt)zT QΣQT z

= Q

(

I − Σ −
2ηt(yt − ŷt)ΣQT

zz
T QΣ

1 + 2ηt(ŷt − yt)zT QΣQT z

)

QT

= Q(I − Σ)
1

2

(

I −
2ηt(yt − ŷt)(I − Σ)−

1

2 ΣQT
zz

T QΣ(I − Σ)−
1

2

1 + 2ηt(ŷt − yt)zT QΣQT z

)

(I − Σ)
1

2 QT .

Let G = Q(I − Σ)
1

2 . If the middle term is symmetric positive definite, then it can be written as EET . This
would lead to I − Wt+1 = GEET GT = GE(GE)T ≻ 0, since for any A, AAT ≻ 0.

Thus to prove that Wt+1 ≺ I, we need to prove that

(

I −
2ηt(yt − ŷt)(I − Σ)−

1

2 ΣQT
zz

T QΣ(I − Σ)−
1

2

1 + 2ηt(ŷt − yt)zT QΣQT z

)

≻ 0. (11)

To do this, we calculate the eigenvalues of this matrix, and show that they are greater than zero. Let
v = (I −Σ)−

1

2 ΣQT
z. Then (I −Σ)−

1

2 ΣQT
zz

T QΣ(I −Σ)−
1

2 = vv
T . Since, vv

T is a rank-one matrix, it has

exactly one positive eigenvalue, and that eigenvalue is equal to its trace tr((I −Σ)−
1

2 ΣQT
zz

T QΣ(I−Σ)−
1

2).
Expanding the trace yields

tr((I − Σ)−
1

2 ΣQT
zz

T QΣ(I − Σ)−
1

2) = tr(QΣ(I − Σ)−1ΣQT
zz

T)

= tr(Q(Σ−1 − I)−1ΣQT
zz

T)

= tr((W−1
t − I)−1WtXt).

To prove Equation 11, we need to show that the eigenvalues are positive; equivalently, we can show that

1 −
2ηt(yt − ŷt)tr((W

−1
t − I)−1WtXt)

1 − 2ηt(y − ŷt)tr(WtXt)
> 0. (12)

By the update rule, ηt < 1
2(yt−ŷt)tr(WtXt)

, and hence the denominator of the second term is positive. Also,

ηt < 1
2(yt−ŷt)

(
1

tr((I+(W−1

t
−I)−1)WtXt)

)

, so Equation 12 holds. Thus Wt+1 ≺ I.

3.2 Regret Bound

Similar to the vector case, we bound loss at each step incurred by algorithm in terms of loss incurred by the
optimal offline solution. Assume ‖z‖2 ≤ R.

Lemma 3.

at(ŷt − yt)
2 − bt(tr(UXt) − yt)

2 ≤ Dld(U, Wt) − Dld(U, Wt+1),

where at and bt are positive constants and U is the optimal offline solution.

6

Proof.

Dld(U, Wt) − Dld(U, Wt+1) = log

(
det(Wt)

det(Wt+1)

)

+ tr((W−1
t − W−1

t+1)U).

Since log(det(A)) = tr(log(A)) and tr(AB) = tr(BA), we have that

Dld(U, Wt) − Dld(U, Wt+1) = tr(log(Wt) − log(Wt+1)) + tr((W−1
t − W−1

t+1)U)

= tr(log(WtW
−1
t+1)) − 2ηt(ŷt − yt)tr(XtU)

= tr(log(I + 2ηt(ŷt − yt)WtXt)) − 2ηt(ŷt − yt)tr(UXt).

Using the Taylor series expansion and ignoring lower order terms,

Dld(U, Wt) − Dld(U, Wt+1) ≥ 2ηt(ŷt − yt)tr(WtXt) − 2η2
t (ŷt − yt)

2tr((WtXt)
2) − 2ηt(ŷt − yt)tr(UXt).

We write X as zz
T , so tr((WtXt)

2) = tr(Wtzz
T Wtzz

T) = (zT Wtz)tr(Wzz
T) = tr(WtXt)

2. Hence,

Dld(U, Wt) − Dld(U, Wt+1) ≥ 2ηt(ŷt − yt)tr(WtXt) − 2η2
t (ŷt − yt)

2tr((WtXt)
2) − 2ηt(ŷt − yt)tr(UXt)

≥ 2ηt(ŷt − yt)tr(WtXt) − 2η2
t (ŷt − yt)

2tr(WtXt)
2 − 2ηt(ŷt − yt)tr(UXt).

Since Wt ≺ I by Lemma 2, tr(WtXt) = z
T Wtz ≤ z

T
z ≤ R2. As a result,

Dld(U, Wt) − Dld(U, Wt+1) ≥ 2ηt(ŷt − yt)tr(WtXt) − 2η2
t (ŷt − yt)

2R2 − 2ηt(ŷt − yt)tr(UXt)

= 2ηt(ŷt − yt)ŷt − 2η2
t (ŷt − yt)

2R2 − 2ηt(ŷt − yt)r,

where r = tr(UtXt). Thus, to prove Lemma 3, we need to prove the same inequality as in Equation 5, with
mR2 replaced by R2. Hence, for 0 ≤ at ≤ ηt and bt = ηt

1−2ηtR2 , Lemma 3 holds.

As in the vector case, we can obtain the final bound by summing the loss at each step.

Theorem 2.

LBG ≤
1

2ηT R2
LU +

1

ηT

Hld(U),

where LMBG is the loss incurred by the Matrix Burg Gradient descent algorithm, LU is loss incurred by

optimal offline algorithm and Hld(U) = − log det(U).

Proof. The proof is very similar to that of the vector case.

4 Application: Online Metric Learning

Selecting an appropriate distance measure (or metric) is fundamental to many learning algorithms such
as k-means, nearest neighbor searches, and others. However, choosing such a measure is highly problem-
specific and ultimately dictates the success—or failure—of the learning algorithm. To this end, there have
been several recent approaches that attempt to learn distance functions. These methods work by exploiting
distance information that is intrinsically available in many learning settings. For example, in the problem
of semi-supervised clustering, points are constrained to be either similar (i.e. the distance between them
should be relatively small) or dissimilar (the distance should be larger). In information retrieval settings,
constraints between pairs of distances can be gathered from click-through feedback. In fully supervised
settings, constraints can be inferred so that points in the same class have smaller distances to each other
than to points in different classes.

Given a set of n points {x1, ..., xn} in R
d, we seek a positive definite matrix A which parameterizes the

Mahalanobis distance1:
dA(xi, xj) = (xi − xj)

T A(xi − xj). (13)

1The term ‘Mahalanobis distance’ frequently refers to the squared Mahalanobis distance, even though it is
p

dA(x, y) that
is a metric. This difference does not affect our method, hence we drop the qualification squared when referring to (13)

7

We can quantify the measure of “closeness” between two Mahalanobis matrices A and A0 via a natural
information-theoretic approach. There exists a simple bijection (up to a scaling function) between the set
of Mahalanobis distances and the set of equal-mean multivariate Gaussian distributions (without loss of
generality, we can assume the Gaussians have zero-mean µ). Given a Mahalanobis distance parameterized
by A, we express its corresponding multivariate Gaussian as p(x; A) = 1

Z
exp (− 1

2dA(x, µ)), where Z is
a normalizing constant. Using this bijection, we measure the distance between two Mahalanobis distance
functions parameterized by A and A0 by the (differential) relative entropy between their corresponding
multivariate Gaussians:

KL(p(x; A)‖p(x; A0)) =

∫

p(x; A) log
p(x; A)

p(x; A0)
dx. (14)

The distance (14) provides a well-founded measure of “closeness” between two Mahalanobis distance functions
and forms the basis of information-theoretic metric learning. It is known that the differential relative entropy
between two multivariate Gaussians can be expressed as the convex combination of a Mahalanobis distance
between mean vectors and the LogDet divergence between the covariance matrices. Assuming the means to
be the same, we have

KL(p(x; A)‖p(x; A0)) =
1

2
Dld(A, A0), (15)

We therefore select d(A, At) = Dld(A, At) as the regularizer for (1), using the above equivalence 15 to obtain
the update

At+1 = argmin
A

Dld(A, At) + ηt(dt − d̂t)
2.

We can view the problem of online metric learning in the following manner: at each time step, we receive a
matrix Xt and a target yt. These encode the distance between two vectors xi and xj . If we let z = xi −xj ,
then tr(AtXt) = z

T Atz = (xi − xj)
T At(xi − xj) = dAt

(xi, xj). Thus, the prediction tr(AtXt) captures
the Mahalanobis distance between the vectors xi and xj using the current Mahalanobis matrix At. The
resulting loss (tr(AtXt) − yt)

2, where yt is the target distance between the two vectors, tells us how close
the current Mahalanobis matrix At is in terms of satisfying the given distance constraint.

As a result, the rank-one online regression algorithm using the LogDet divergence can be used as method
for learning a Mahalanobis matrix A, where at every time step two points, along with their target distance,
are presented to the algorithm. The regret bound proven in the previous section applies directly to this case.

See[2, 3] for further details on information-theoretic metric learning, including the analysis of an offline
algorithm.

5 Experimental Results

In section 2.1 and 3.2, we showed worst case bounds for our algorithms. To simulate the online learning
problem, we now generate simple artificial data. First, we generate a random vector u drawn from Sm−1.
Then, we generate some random inputs xt, also drawn from Sm−1. We output y as u · xt mixed with some
noise, i.e,

y = (u · xt)(1 + νZ),

where Z is an uniformly distributed random number over [−0.5, 0.5] and ν is the noise level.
We generate this artificial data for N = 100 and T = 10000 iterations. Figure 1 compares performance of

the Burg entropy-based algorithm with those using relative entropy and squared Euclidean distance as the
regularization term, when the noise level is set to 0. Clearly, the Burg algorithm converges slower compared
to the other methods. But, Figures 2 and 3 show that as noise increases, the Burg performance improves
in comparison to both relative entropy and squred Euclidean distance. Figure 4 shows that when noise
is around 30% then the Burg algorithm performs comparatively to relative entropy, and squred Euclidean
performs poorly.

6 Conclusion

In this paper, we introduced online regression based on using a Burg entropy-based regularization, leading to
new online regret bounds. An extension to the rank-one matrix case was also analyzed. The main application

8

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50 60 70 80 90 100

Burg Entropy
Relative Entropy

Euclidean Entropy

Figure 1: Comparison of performance of burg, relative
and euclidean distance measure with noise=0%

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 10 20 30 40 50 60 70 80 90 100

Burg Entropy
Relative Entropy

Euclidean Entropy

Figure 2: Comparison of performance of burg, relative
and euclidean distance measure with noise=10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

Burg Entropy
Relative Entropy

Euclidean Entropy

Figure 3: Comparison of performance of burg, relative
and euclidean distance measure with noise=20%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

Burg Entropy
Relative Entropy

Euclidean Entropy

Figure 4: Comparison of performance of burg, relative
and euclidean distance measure with noise=30%

9

is to online metric learning, which can be cast as an online regression problem for rank-one matrices; this
metric learning formulation has an information-theoretic motivation, and results in [2] have shown that it
outperforms existing methods. Future work includes improving the bounds so that they do not depend on
the learning rate, and extending the matrix analysis to the general case.

References

[1] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, Clustering with bregman divergences., in
SDM, 2004, pp. 234–245.

[2] J. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, Information-theoretic metric learning, in
International Conference on Metric Learning, 2007, p. to appear.

[3] J. Davis, B. Kulis, S. Sra, and I. Dhillon, Information-theoretic metric learning, in NIPS 2006
Workshop on Learning to Compare Examples, 2006.

[4] G. H. Golub and C. F. van Loan, Matrix Computations, Johns Hopkins Series in the Mathematical
Sciences, Johns Hopkins Univ. Press, second ed., 1989.

[5] G. J. Gordon, Regret bounds for prediction problems, in COLT, 1999, pp. 29–40.

[6] J. Kivinen and M. K. Warmuth, Exponentiated gradient versus gradient descent for linear predictors,
Inf. Comput., 132 (1997), pp. 1–63.

[7] B. Kulis, M. Sustik, and I. S. Dhillon, Learning low-rank kernel matrices., in ICML, 2006, pp. 505–
512.

[8] K. Tsuda, G. Raetsch, and M. K. Warmuth, Matrix exponentiated gradient updates of online

learning and bregman projection, Journal of Machine Learning Research, 6 (2005).

10

