
Learning to Hash with Binary Reconstructive
Embeddings

Brian Kulis and Trevor Darrell
UC Berkeley EECS and ICSI

Berkeley, CA
{kulis,trevor}@eecs.berkeley.edu

Abstract

Fast retrieval methods are increasingly critical for many large-scale analysis tasks,
and there have been several recent methods that attempt to learn hash functions for
fast and accurate nearest neighbor searches. In this paper,we develop an algorithm
for learning hash functions based on explicitly minimizingthe reconstruction error
between the original distances and the Hamming distances ofthe corresponding
binary embeddings. We develop a scalable coordinate-descent algorithm for our
proposed hashing objective that is able to efficiently learnhash functions in a va-
riety of settings. Unlike existing methods such as semantichashing and spectral
hashing, our method is easily kernelized and does not require restrictive assump-
tions about the underlying distribution of the data. We present results over sev-
eral domains to demonstrate that our method outperforms existing state-of-the-art
techniques.

1 Introduction

Algorithms for fast indexing and search have become important for a variety of problems, particu-
larly in the domains of computer vision, text mining, and webdatabases. In cases where the amount
of data is huge—large image repositories, video sequences, and others—having fast techniques for
finding nearest neighbors to a query is essential. At an abstract level, we may view hashing methods
for similarity search as mapping input data (which may be arbitrarily high-dimensional) to a low-
dimensional binary (Hamming) space. Unlike standard dimensionality-reduction techniques from
machine learning, the fact that the embeddings are binary iscritical to ensure fast retrieval times—
one can perform efficient linear scans of the binary data to find the exact nearest neighbors in the
Hamming space, or one can use data structures for finding approximate nearest neighbors in the
Hamming space which have running times that are sublinear inthe number of total objects [1, 2].
Since the Hamming distance between two objects can be computed via an xor operation and a bit
count, even a linear scan in the Hamming space for a nearest neighbor to a query in a database of
100 million objects can currently be performed within a few seconds on a typical workstation. If the
input dimensionality is very high, hashing methods lead to enormous computational savings.

In order to be successful, hashing techniques must appropriately preserve distances when mapping to
the Hamming space. One of the basic but most widely-employedmethods, locality-sensitive hashing
(LSH) [1, 2], generates embeddings via random projections and has been used for many large-scale
search tasks. An advantage to this technique is that the random projections provably maintain the
input distances in the limit as the number of hash bits increases; at the same time, it has been
observed that the number of hash bits required may be large insome cases to faithfully maintain
the distances. On the other hand, several recent techniques—most notably semantic hashing [3]
and spectral hashing [4]—attempt to overcome this problem bydesigning hashing techniques that
leverage machine learning to find appropriate hash functions to optimize an underlying hashing
objective. Both methods have shown advantages over LSH in terms of the number of bits required

1

to find good approximate nearest neighbors. However, these methods cannot be directly applied in
kernel space and have assumptions about the underlying distributions of the data. In particular, as
noted by the authors, spectral hashing assumes a uniform distribution over the data, a potentially
restrictive assumption in some cases.

In this paper, we introduce and analyze a simple objective for learning hash functions, develop an ef-
ficient coordinate-descent algorithm, and demonstrate that the proposed approach leads to improved
results as compared to existing hashing techniques. The main idea is to construct hash functions
that explicitly preserve the input distances when mapping to the Hamming space. To achieve this,
we minimize a squared loss over the error between the input distances and the reconstructed Ham-
ming distances. By analyzing the reconstruction objective, we show how to efficiently and exactly
minimize the objective function with respect to a single variable. If there aren training points,k
nearest neighbors per point in the training data, andb bits in our desired hash table, our method ends
up costingO(nb(k + log n)) time per iteration to update all hash functions, and provably reaches a
local optimum of the reconstruction objective. In experiments, we compare against relevant existing
hashing techniques on a variety of important vision data sets, and show that our method is able to
compete with or outperform state-of-the-art hashing algorithms on these data sets. We also apply
our method on the very large Tiny Image data set of 80 million images [5], to qualitatively show
some example retrieval results obtained by our proposed method.

1.1 Related Work

Methods for fast nearest neighbor retrieval are generally broken down into two families. One group
partitions the data space recursively, and includes algorithms such ask − d trees [6], M-trees [7],
cover trees [8], metric trees [9], and other related techniques. These methods attempt to speed up
nearest neighbor computation, but can degenerate to a linear scan in the worst case. Our focus in
this paper is on hashing-based methods, which map the data toa low-dimensional Hamming space.
Locality-sensitive hashing [1, 2] is the most popular method, and extensions have been explored for
accommodating distances such asℓp norms [10], learned metrics [11], and image kernels [12]. Algo-
rithms based on LSH typically come with guarantees that the approximate nearest neighbors (neigh-
bors within(1 + ǫ) times the true nearest neighbor distance) may be found in time that is sublinear
in the total number of database objects (but as a function ofǫ). Unlike standard dimensionality-
reduction techniques, the binary embeddings allow for extremely fast similarity search operations.
Several recent methods have explored ways to improve upon the random projection techniques used
in LSH. These include semantic hashing [3], spectral hashing [4], parameter-sensitive hashing [13],
and boosting-based hashing methods [14].

2 Hashing Formulation

In the following section, we describe our proposed method, starting with the choice of parameteri-
zation for the hash functions and the objective function to minimize. We then develop a coordinate-
descent algorithm used to minimize the objective function,and discuss extensions of the proposed
approach.

2.1 Setup

Let our data set be represented by a set ofn vectors, given byX = [x1 x2 ... xn]. We will assume
that these vectors are normalized to have unitℓ2 norm—this will make it easier to maintain the
proper scale for comparing distances in the input space to distance in the Hamming space.1 Let a
kernel function over the data be denoted asκ(xi,xj). We use a kernel function as opposed to the
standard inner product to emphasize that the algorithm can be expressed purely in kernel form.

We would like to project each data point to a low-dimensionalbinary space to take advantage of fast
nearest neighbor routines. Suppose that the desired numberof dimensions of the binary space isb;
we will compute theb-dimensional binary embedding by projecting our data usinga set ofb hash
functionsh1, ..., hb. Each hash functionhi is a binary-valued function, and our low-dimensional

1Alternatively, we may scale the data appropriately by a constant so that thesquared Euclidean distances
1

2
‖xi − xj‖

2 are in[0, 1].

2

binary reconstruction can be represented asx̃i = [h1(xi);h2(xi); ...;hb(xi)]. Finally, denote
d(xi,xj) = 1

2‖xi − xj‖
2 andd̃(xi,xj) = 1

b
‖x̃i − x̃j‖

2. Notice thatd andd̃ are always between
0 and 1.

2.2 Parameterization and Objective

In standard random hyperplane locality-sensitive hashing(e.g. [1]), each hash functionhp is gener-
ated independently by selecting a random vectorrp from a multivariate Gaussian with zero-mean
and identity covariance. Then the hash function is given ashp(x) = sign(rT

p x). In contrast, we
propose to generate a sequence of hash functions that are dependent on one another, in the same
spirit as in spectral hashing (though with a different parameterization). We introduce a matrixW of
sizeb × n, and we parameterize the hash functionsh1, ..., hp, ..., hb as follows:

hp(x) = sign

(s
∑

q=1

Wpqκ(xpq,x)

)

.

Note that the data pointsxpq for each hash function need not be the same for eachhq (that is, each
hash function may utilize different sets of points). Similarly, the number of pointss used for each
hash function may change, though for simplicity we will present the case whens is the same for each
function (and so we can represent all weights via theb × s matrix W). Though we are not aware
of any existing methods that parameterize the hash functions in this way, this parameterization is
natural for several reasons. It does not explicitly assume anything about the distribution of the
data. It is expressed in kernelized form, meaning we can easily work over a variety of input data.
Furthermore, the form of each hash function—the sign of a linear combination of kernel function
values—is the same as several kernel-based learning algorithms such as support vector machines.

Rather than simply choosing the matrixW based on random hyperplanes, we will specificallycon-
struct this matrix to achieve good reconstructions. In particular, we will look at the squared error
between the original distances (usingd) and the reconstructed distances (usingd̃). We minimize the
following objective with respect to the weight matrixW :

O({xi}
n
i=1,W) =

∑

(i,j)∈N

(d(xi,xj) − d̃(xi,xj))
2. (1)

The setN is a selection of pairs of points, and can be chosen based on the application. Typically,
we will choose this to be a set of pairs which includes both thenearest neighbors as well as other
pairs from the database (see Section 3 for details). If we choosek pairs for each point, then the total
size ofN will be nk.

2.3 Coordinate-Descent Algorithm

The objectiveO given in (1) is highly non-convex inW , making optimization the main challenge in
using the proposed objective for hashing. One of the most difficult issues is due to the fact that the
reconstructions are binary; the objective is not continuous or differentiable, so it is not immediately
clear how an effective algorithm would proceed. One approach is to replace the sign function by the
sigmoid function, as is done with neural networks and logistic regression.2 Then the objectiveO
and gradient∇O can both be computed inO(nkb) time. However, our experience with minimizing
O with such an approach using a quasi-Newton L-BFGS algorithmtypically resulted in poor local
optima; we need an alternative method.

Instead of the continuous relaxation, we will consider fixing all but one weightWpq, and optimize
the original objectiveO with respect toWpq. Surprisingly, we will show below that anexact, optimal
update to this weight can be achieved in timeO(n log n+nk). Such an approach will update a single
hash functionhp; then, by choosing a single weight to update for each hash function, we can update
all hash functions inO(nb(k + log n)) time. In particular, ifk = Ω(log n), then we can update
all hash functions on the order of the time it takes to computethe objective function itself, making
the updates particularly efficient. We will also show that this method provably converges to a local
optimum of the objective functionO.

2The sigmoid function is defined ass(x) = 1/(1 + e−x), and its derivative iss′(x) = s(x)(1 − s(x)).

3

We sketch out the details of our coordinate-descent scheme below. We begin with a simple lemma
characterizing how the objective function changes when we update a single hash function.

Lemma 1. Let D̄ij = d(xi,xj) − d̃(xi,xj). Consider updating some hash functionhold to hnew

(whered̃ useshold), and letho andhn be then × 1 vectors obtained by applying the old and new
hash functions to each data point, respectively. Then the objective functionO from(1) after updating
the hash function can be expressed as

O =
∑

(i,j)∈N

(

D̄ij +
1

b
(ho(i) − ho(j))

2 −
1

b
(hn(i) − hn(j))2

)2

.

Proof. For notational convenience in this proof, letD̃old andD̃new be the matrices of reconstructed
distances usinghold andhnew, respectively, and letHold andHnew be then × b matrices of old
and new hash bits, respectively. Also, letet be thet-th standard basis vector ande be a vector of
all ones. Note thatHnew = Hold + (hn − ho)e

T
t , wheret is the index of the hash function being

updated. We can express̃Dold as

D̃old =
1

b

(

ℓolde
T + eℓ

T
old − 2HoldH

T
old

)

,

whereℓold is the vector of squared norms of the rows ofHold. Note that the corresponding vector
of squared norms of the rows ofHnew may be expressed asℓnew = ℓold − ho + hn since the hash
vectors are binary-valued. Therefore we may write

D̃new =
1

b

(

(ℓold + hn − ho)e
T + e(ℓold + hn − ho)

T

−2(Hold + (hn − ho)e
T
t)(Hold + (hn − ho)e

T
t)T

)

= D̃old +
1

b

(

(hn − ho)e
T + e(hn − ho)

T − 2(hnh
T
n − hoh

T
o)

)

= D̃old −
1

b

(

(hoe
T + eh

T
o − 2hoh

T
o) − (hne

T + eh
T
n − 2hnh

T
n)

)

,

where we have used the fact thatHoldet = ho. We can then write the objective using̃Dnew to
obtain

O =
∑

(i,j)∈N

(

D̄ij +
1

b
(ho(i) + ho(j) − 2ho(i)ho(j)) −

1

b
(hn(i) + hn(j) − 2hn(i)hn(j))

)2

=
∑

(i,j)∈N

(

D̄ij +
1

b
(ho(i) − ho(j))

2 −
1

b
(hn(i) − hn(j))2

)2

,

sinceho(i)
2 = ho(i) andhn(i)2 = hn(i). This completes the proof.

The lemma above demonstrates that, when updating a hash function, the new objective function can
be computed inO(nk) time, assuming that we have computed and stored the values ofD̄ij . Next
we show that we can compute an optimal weight update in timeO(nk + n log n).

Consider choosing some hash functionhp, and choose one weight indexq, i.e. fix all entries of
W exceptWpq, which corresponds to the one weight updated during this iteration of coordinate-
descent. Modifying the value ofWpq results in updatinghp to a new hashing functionhnew. Now,
for every pointx, there is ahashing threshold: a new value ofWpq, which we will call Ŵpq, such
that

s
∑

q=1

Ŵpqκ(xpq,x) = 0.

4

Observe that, ifcx =
∑s

q=1 Wpqκ(xpq,x), then the thresholdtx is given by

tx = Wpq −
cx

κ(xpq,x)
.

We first compute the thresholds for alln data points: once we have the values ofcx for all x,
computingtx for all points requiresO(n) time. Since we are updating a singleWpq per iteration,
we can update the values ofcx in O(n) time after updatingWpq, so the total time to compute all
thresholdstx is O(n).

Next, we sort the thresholds in increasing order, which defines a set ofn + 1 intervals (interval 0 is
the interval of values smaller than the first threshold, interval 1 is the interval of points between the
first and the second threshold, and so on). Observe that, for any fixed interval, the new computed
hash functionhnew does not change over the entire interval. Furthermore, observe that as we cross
from one threshold to the next, a single bit of the corresponding hash vector flips. As a result, we
need only compute the objective function at each of then + 1 intervals, and choose the interval
that minimizes the objective function. We choose a valueWpq within that interval (which will be
optimal) and update the hash function using this new choice of weight. The following result shows
that we can choose the appropriate interval in timeO(nk). When we add the cost of sorting the
thresholds, the total cost of an update to a single weightWpq is O(nk + n log n).

Lemma 2. Consider updating a single hash function. Suppose we have a sequence of hash vectors
ht0 , ...,htn

such thathtj−1
andhtj

differ by a single bit for1 ≤ j ≤ n. Then the objective functions
for all n + 1 hash functions can be computed inO(nk) time.

Proof. The objective function may be computed inO(nk) time for the hash functionht0 corre-
sponding to the smallest interval. Consider the case when going from ho = htj−1

to hn = htj
for

some1 ≤ j ≤ n. Let the index of the bit that changes inhn bea. The only terms of the sum in
the objective that change are ones of the form(a, j) ∈ N and(i, a) ∈ N . Let fa = 1 if ho(a) =
0,hn(a) = 1, andfa = −1 otherwise. Then we can simplify(hn(i)−hn(j))2 − (ho(i)−ho(j))

2

to fa(1 − 2hn(j)) whena = i and tofa(1 − 2hn(i)) whena = j (the expression is zero when
i = j and will not contribute to the objective). Therefore the relevant terms in the objective function
as given in Lemma 1 may be written as:

∑

(a,j)∈N

(

D̄aj −
fa

b
(1 − 2hn(j))

)2

+
∑

(i,a)∈N

(

D̄ia −
fa

b
(1 − 2hn(i))

)2

.

As there arek nearest neighbors, the first sum will havek elements and can be computed inO(k)
time. The second summation may have more or less thank terms, but across all data points there will
bek terms on average. Furthermore, we must updateD̄ as we progress through the hash functions,
which can also be straightforwardly done inO(k) time on average. Completing this process over all
n + 1 hash functions results in a total ofO(nk) time.

Putting everything together, we have shown the following result:

Theorem 3. Fix all but one entryWpq of the hashing weight matrixW . An optimal update toWpq

to minimize(1) may be computed inO(nk + n log n) time.

Our overall strategy successively cycles through each hashfunction one by one, randomly selects a
weight to update for each hash function, and computes the optimal updates for those weights. It then
repeats this process until reaching local convergence. Onefull iteration to update all hash functions
requires timeO(nb(k + log n)). Note that local convergence is guaranteed in a finite numberof
updates since each update will never increase the objectivefunction value, and only a finite number
of possible hash configurations are possible.

2.4 Extensions

The method described in the previous section may be enhancedin various ways. For instance,
the algorithm we developed is completely unsupervised. Onecould easily extend the method to
a supervised one, which would be useful for example in large-scalek-NN classification tasks. In
this scenario, one would additionally receive a set of similar and dissimilar pairs of points based on

5

class labels or other background knowledge. For all similarpairs, one could set the target original
distance to be zero, and for all dissimilar pairs, one could set the target original distance to be large
(say, 1).

One may also consider loss functions other than the quadratic loss considered in this paper. Another
option would be to use anℓ1-type loss, which would not penalize outliers as severely. Additionally,
one may want to introduce regularization, especially for the supervised case. For example, the
addition of anℓ1 regularization over the entries ofW could lead to sparse hash functions, and may
be worth additional study.

3 Experiments

We now present results comparing our proposed approach to the relevant existing methods—locality
sensitive hashing, semantic hashing (RBM), and spectral hashing. We also compared against the
Boosting SSC algorithm [14] but were unable to find parameters to yield competitive performance,
and so we do not present those results here. We implemented our binary reconstructive embedding
method (BRE) and LSH, and used the same code for spectral hashing and RBM that was employed
in [4]. We further present some qualitative results over theTiny Image data set to show example
retrieval results obtained by our method.

3.1 Data Sets and Methodology

We applied the hashing algorithms to a number of important large-scale data sets from the com-
puter vision community. Our vision data sets include: the Photo Tourism data [15], a collection
of approximately 300,000 image patches, processed using SIFT to form 128-dimensional vectors;
the Caltech-101 [16], a standard benchmark for object recognition in the vision community; and
LabelMe and Peekaboom [17], two image data set on top of whichglobal Gist descriptors have
been extracted. We also applied our method to MNIST, the standard handwritten digits data set, and
Nursery, one of the larger UCI data sets.

We mean-centered the data and normalized the feature vectors to have unit norm. Following the sug-
gestion in [4], we apply PCA (or kernel PCA in the case of kernelized data) to the input data before
applying spectral hashing or BRE—the results of the RBM method and LSH were better without
applying PCA, so PCA is not applied for these algorithms. Forall data sets, we trained the methods
using 1000 randomly selected data points. For training the BRE method, we select nearest neigh-
bors using the top 5th percentile of the training distances and set the target distances to 0; we found
that this ensures that the nearest neighbors in the embeddedspace will have Hamming distance very
close to 0. We also choose farthest neighbors using the 98th percentile of the training distances and
maintained their original distances as target distances. Having both near and far neighbors improves
performance for BRE, as it prevents a trivial solution whereall the database objects are given the
same hash key. The spectral hashing and RBM parameters are set as in [4, 17]. After construct-
ing the hash functions for each method, we randomly generate3000 hashing queries (except for
Caltech-101, which has fewer than 4000 data points; in this case we choose the remainder of the
data as queries).

We follow the evaluation scheme developed in [4]. We collecttraining/test pairs such that the un-
normalized Hamming distance using the constructed hash functions is less than or equal to three.
We then compute the percentage of these pairs that are nearest neighbors in the original data space,
which are defined as pairs of points from the training set whose distances are in the top 5th percentile.
This percentage is plotted as the number of bits increases. Once the number of bits is sufficiently
high (e.g. 50), one would expect that distances with a Hamming distance less than or equal to three
would correspond to nearest neighbors in the original data embedding.

3.2 Quantitative Results

In Figure 1, we plot hashing retrieval results over each of the data sets. We can see that the BRE
method performs comparably to or outperforms the other methods on all data sets. Observe that
both RBM and spectral hashing underperform all other methods on at least one data set. On some

6

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of bits

P
ro

p.
 o

f g
oo

d
ne

ig
hb

or
s

w
ith

 H
am

m
. d

is
ta

nc
e

<
=

 3

Photo Tourism

BRE
Spectral hashing
RBM
LSH

10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of bits

P
ro

p.
 o

f g
oo

d
ne

ig
hb

or
s

w
ith

 H
am

m
. d

is
ta

nc
e

<
=

 3

Caltech−101

BRE
Spectral hashing
RBM
LSH

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of bits

P
ro

p.
 o

f g
oo

d
ne

ig
hb

or
s

w
ith

 H
am

m
. d

is
ta

nc
e

<
=

 3

LabelMe

BRE
Spectral hashing
RBM
LSH

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of bits

P
ro

p.
 o

f g
oo

d
ne

ig
hb

or
s

w
ith

 H
am

m
. d

is
ta

nc
e

<
=

 3

Peekaboom

BRE
Spectral hashing
RBM
LSH

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of bits

P
ro

p.
 o

f g
oo

d
ne

ig
hb

or
s

w
ith

 H
am

m
. d

is
ta

nc
e

<
=

 3

MNIST

BRE
Spectral hashing
RBM
LSH

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of bits

P
ro

p.
 o

f g
oo

d
ne

ig
hb

or
s

w
ith

 H
am

m
. d

is
ta

nc
e

<
=

 3

Nursery

BRE
Spectral hashing
RBM
LSH

Figure 1: Results over Photo Tourism, Caltech-101, LabelMe, Peekaboom, MNIST, and Nursery.
The plots show how well the nearest neighbors in the Hamming space (pairs of data points with
unnormalized Hamming distance less than or equal to 3) correspond to the nearest neighbors (top
5th percentile of distances) in the original dataset. Overall, our method outperforms, or performs
comparably to, existing methods. See text for further details.

data sets, RBM appears to require significantly more than 1000 training images to achieve good
performance, and in these cases the training time is substantially higher than the other methods.

One surprising outcome of these results is that LSH performswell in comparison to the other ex-
isting methods (and outperforms some of them for some data sets)—this stands in contrast to the
results of [4], where LSH showed significantly poorer performance (we also evaluated our LSH
implementation using the same training/test split as in [4]and found similar results). The better
performance in our tests may be due to our implementation of LSH; we use Charikar’s random
projection method [1] to construct hash tables.

In terms of training time, the BRE method typically converges in 50–100 iterations of updating
all hash functions, and takes 1–5 minutes to train per data set on our machines (depending on the
number of bits requested). Relatively speaking, the time required for training is typically faster than
RBM but slower than spectral hashing and LSH. Search times inthe binary space are uniform across
each of the methods and our timing results are similar to those reported previously (see, e.g. [17]).

3.3 Qualitative Results

Finally, we present qualitative results on the large Tiny Image data set [5] to demonstrate our method
applied to a very large database. This data set contains 80 million images, and is one of the largest
readily available data sets for content-based image retrieval. Each image is stored as32× 32 pixels,
and we employ the global Gist descriptors that have been extracted for each image.

We ran our reconstructive hashing algorithm on the Gist descriptors for the Tiny Image data set
using 50 bits, with 1000 training images used to construct the hash functions as before. We selected
a random set of queries from the database and compared the results of a linear scan over the Gist
features with the hashing results over the Gist features. When obtaining hashing results, we collected
the nearest neighbors in the Hamming space to the query (the top0.01% of the Hamming distances),
and then sorted these by their distance in the original Gist space. Some example results are displayed
in Figure 2; we see that, with 50 bits, we can obtain very good results that are qualitatively similar
to the results of the linear scan.

7

Figure 2: Qualitative results over the 80 million images in the Tiny Image database [5]. For each
group of images, the top left image is the query, the top row corresponds to a linear scan, and the
second row corresponds to the hashing retrieval results using 50 hash bits. The hashing results are
similar to the linear scan results but are significantly faster to obtain.

4 Conclusion and Future Work

In this paper, we presented a method for learning hash functions, developed an efficient coordinate-
descent algorithm for finding a local optimum, and demonstrated improved performance on several
benchmark vision data sets as compared to existing state-of-the-art hashing algorithms. One avenue
for future work is to explore alternate methods of optimization; our approach, while simple and fast,
may fall into poor local optima in some cases. Second, we would like to explore the use of our
algorithm in the supervised setting for large-scalek-NN tasks.

Acknowledgments

This work was supported in part by DARPA, Google, and NSF grants IIS-0905647 and IIS-0819984.
We thank Rob Fergus for the spectral hashing and RBM code, andGreg Shakhnarovich for the
Boosting SSC code.

References
[1] M. Charikar. Similarity Estimation Techniques from Rounding Algorithms. In STOC, 2002.

[2] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimension-
ality. In STOC, 1998.

[3] R. R. Salakhutdinov and G. E. Hinton. Learning a Nonlinear Embedding by Preserving Class Neighbour-
hood Structure. InAISTATS, 2007.

[4] Y. Weiss, A. Torralba, and R. Fergus. Spectral Hashing. InNIPS, 2008.

[5] A. Torralba, R. Fergus, and W. T. Freeman. 80 Million Tiny Images: A Large Dataset for Non-parametric
Object and Scene Recognition.TPAMI, 30(11):1958–1970, 2008.

8

[6] J. Freidman, J. Bentley, and A. Finkel. An Algorithm for Finding BestMatches in Logarithmic Expected
Time. ACM Transactions on Mathematical Software, 3(3):209–226, September 1977.

[7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for Similarity Search in Metric
Spaces. InVLDB, 1997.

[8] A. Beygelzimer, S. Kakade, and J. Langford. Cover Trees forNearest Neighbor. InICML, 2006.

[9] J. Uhlmann. Satisfying General Proximity / Similarity Queries with Metric Trees.Information Processing
Letters, 40:175–179, 1991.

[10] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-Sensitive Hashing Scheme Based on p-Stable
Distributions. InSOCG, 2004.

[11] P. Jain, B. Kulis, and K. Grauman. Fast Image Search for Learned Metrics. InCVPR, 2008.

[12] K. Grauman and T. Darrell. Pyramid Match Hashing: Sub-Linear Time Indexing Over Partial Correspon-
dences. InCVPR, 2007.

[13] G. Shakhnarovich, P. Viola, and T. Darrell. Fast Pose Estimation with Parameter-Sensitive Hashing. In
ICCV, 2003.

[14] G. Shakhnarovich.Learning Task-specific Similarity. PhD thesis, MIT, 2006.

[15] N. Snavely, S. Seitz, and R. Szeliski. Photo Tourism: Exploring Photo Collections in 3D. InSIGGRAPH
Conference Proceedings, pages 835–846, New York, NY, USA, 2006. ACM Press.

[16] L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative Visual Models from Few Training Examples:
an Incremental Bayesian Approach Tested on 101 Object Categories.In Workshop on Generative Model
Based Vision, Washington, D.C., June 2004.

[17] A. Torralba, R. Fergus, and Y. Weiss. Small Codes and Large Databases for Recognition. InCVPR, 2008.

9

