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Abstract We address the problem of visual domain

adaptation for transferring object models from one da-

taset or visual domain to another. We introduce a uni-

fied flexible model for both supervised and semi-supervised

learning that allows us to learn transformations be-

tween domains. Additionally, we present two instanti-

ations of the model, one for general feature adapta-

tion/alignment, and one specifically designed for clas-

sification. First, we show how to extend metric learn-

ing methods for domain adaptation, allowing for learn-

ing metrics independent of the domain shift and the fi-

nal classifier used. Furthermore, we go beyond classical

metric learning by extending the method to asymmet-

ric, category independent transformations. Our frame-

work can adapt features even when the target domain

does not have any labeled examples for some categories,
and when the target and source features have different

dimensions. Finally, we develop a joint learning frame-

work for adaptive classifiers, which outperforms com-

peting methods in terms of multi-class accuracy and

scalability. We demonstrate the ability of our approach

to adapt object recognition models under a variety of

situations, such as differing imaging conditions, feature

types, and codebooks. The experiments show its strong

performance compared to previous approaches and its

applicability to large-scale scenarios.
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(b) amazon.com 

(a) digital SLR camera 

(c) robot-mounted 
webcam 

Fig. 1 We address the problem of transfering object category
models between visual domains, such as (a) high-resolution
DSLR photographs of objects taken by a human, (b) images
downloaded from amazon.com, and (c) images captured by a
robot-mounted webcam. Each domain is characterized by a
distinct feature distribution caused by, e.g., background clut-
ter in (a,c) vs. uniform backgrounds in (b), or fine-grained
detail in (a,b) vs. lack thereof in (c) (as on the laptop key-
board).

1 Introduction

In many real-world applications of object recognition,

the image distribution used for training (source data-

set, or domain) is different from the image distribution

used for testing (target domain). This distribution shift

is typically caused by data collection bias (see Figure 1

for three example domains collected for the same set

of object categories.) In general, visual domains can

differ in a combination of (often unknown) factors, in-

cluding scene, intra-category variation, object location

and pose, viewing angle, resolution, motion blur, scene
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illumination, background clutter, camera characteris-

tics, etc. Recent studies have demonstrated a signifi-

cant degradation in the performance of state-of-the-art

image classifiers due to domain shift from pose changes

(Farhadi and Tabrizi, 2008), a shift from commercial to

consumer video (Duan et al, 2009, 2012b), and, more

generally, training datasets biased by the way in which

they were collected (Torralba and Efros, 2011).

Methods for adapting to a target distribution have

been proposed, both in and outside of the vision com-

munity. Some have focused on learning adapted clas-

sifier parameters, typically by minimizing classification

error using a small number of (category) labels in the

target domain (Bergamo and Torresani, 2010; Jiang

et al, 2008; Yang et al, 2007, etc.). Others use exist-

ing classifiers but learn a transformation between the

features in the various domains, either by utilizing unla-

beled but corresponding points across domains, such as

a scene captured simultaneously from multiple views (Far-

hadi and Tabrizi, 2008), or by somehow aligning the

domain distributions (Gopalan et al, 2011; Gong et al,

2012).

In this paper, we introduce a novel domain adap-

tation technique that improves on and combines the

above approaches. We first propose a novel method of

learning a domain-invariant feature space, and later ex-

tend this formulation to simultaneously adjust the de-

cision boundary in the new space, using all available

labeled data.

The key idea behind our feature adaptation method

is to learn a regularized transformation that maps fea-

ture points from one domain to another using cross-

domain constraints. The constraints are formed by re-

quiring that the transformation maps points from the

same category (but different domain) near each other.

Its advantages over previous feature adaptation meth-

ods are that 1) it can learn from category labels, and

not just from instance-level constraints, 2) it can adapt

models between heterogeneous spaces, including those

with different dimensions, via an asymmetric transform,

and 3) the learned transformation is category indepen-

dent and thus transferrable to unlabeled categories. This

me-thod, which we call the Asymmetric Regular-

ized Cross-domain Transform (arc-t), is indepen-

dent of the classifier and allows us to encode domain

invariance into the feature representation of a broad

range of classification methods, from k-NN to SVM, as

well as clustering methods.

Forcing all intra-class points to be similar can be in-

efficient when the end goal is to learn a decision bound-

ary. We extend the above to simultaneously learn the

transformation of features and the classifier parameters

themselves, using the same classification loss to jointly

optimize both. This method, referred to as Maximum

Margin Domain Transform (mmdt), provides a

way to adapt max-margin classifiers in a multi-class

manner, by learning a shared component of the domain

shift as captured by the feature transformation.

Because it operates over the input features, mmdt

can generalize the learned shift in a way that parameter-

based methods cannot. On the other hand, it overcomes

the limitations of the arc-t method as applied to classi-

fication: by optimizing the classification loss directly in

the transform learning framework, it can achieve higher

accuracy; furthermore, its use of efficient hyperplane

constraints significantly reduces the training time of the

algorithm, and learning a transformation directly from

target to source allows efficient optimization in linear

space.

The article builds on several conference publications.

The transform learning methods for domain adapta-

tion have been presented in Saenko et al (2010) (for

symmetric metrics) and in Kulis et al (2011) (asym-

metric arc-t). The max-margin formulation was intro-

duced in Hoffman et al (2013). This work presents a

unified framework for all three methods, and further

insights into their underlying connections. In addition,

we present a comprehensive comparison of the meth-

ods to each other, as well as to recent visual domain

adaptation approaches.

2 Related Work

Domain adaptation, or covariate shift, is a fundamental

problem in machine learning and in related fields. It
has attracted a lot of attention in the natural language

community (Blitzer et al, 2007; Daume III, 2007; Ben-

david et al, 2007; Jiang and Zhai, 2007, etc.) and in

computer vision (Bergamo and Torresani, 2010; Li and

Zickler, 2012; Jhuo et al, 2012; Gong et al, 2012, etc.).

The problem statement of domain adaptation is re-

lated to multi-task learning, but differs from it in the

following way: in domain adaptation problems, the dis-

tribution p(x) over the features varies across tasks (do-

mains), while the output labels y remain the same; in

multi-task learning or knowledge transfer, p(x) stays

the same across tasks (single domain), while the output

labels vary (see Jiang (2008) for more details). In this

article, we address multi-task learning across domains;

i.e., both p(x) and the output labels y can change be-

tween domains.

In the following, we briefly review domain adap-

tation methods that either focus on computer vision

applications or that are related to our approach. We

present a detailed comparison to several of these meth-
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ods in Section 7. A comprehensive overview of multi-

task learning and domain adaptation is given in Jiang

(2008).

Classifier adaptation Several classifier-centric ap-

proaches have been presented for domain adaptation,

most based on the SVM. For example, Bergamo and

Torresani (2010) propose a weighted combination of

source, target, and transductive SVMs. One of the promi-

nent approaches is given by Daume III (2007), who in-

troduces a feature replication method for domain adap-

tation. The basic idea is to define augmented feature

vectors x′ = (x;x; 0) for data points x in the source

and x̃′ = (x̃; 0; x̃) for data points x̃ in the target.

Daume also gives an overview of the relevant baselines,

which we employ in this work. In the linear case, feature

replication (Daume III, 2007) can be shown to decom-

pose the learned hyperplane parameter into θ = θ̂+θ′,

where θ̂ is shared by all domains (Jiang et al, 2008).

This is similar to Adaptive SVMs (Yang et al, 2007; Li,

2007), where the target classifier fT (x) is adapted from

the existing, auxiliary classifier fA(x) via the equation

fT (x) = fA(x) + δf(x), where δf(x) is the pertur-

bation function. The PMT-SVM method of Aytar and

Zisserman (2011) is related but uses a different regu-

larization term that does not indirectly penalize the

margin. Domain transfer SVM (Duan et al, 2009) at-

tempts to reduce the mismatch in the domain distri-

butions, measured by the maximum mean discrepancy,

while also learning a target decision function. A related

method (Duan et al, 2012b) utilizes adaptive multiple

kernel learning to learn a kernel function based on mul-

tiple base kernels.

The disadvantage of methods that only adapt the

classifier is their inability to transfer the learned do-

main shift to novel categories, which is limiting in ob-

ject recognition scenarios, where the set of available cat-

egory labels varies among datasets.

Multi-view learning Multi-view learning (Sharma

et al, 2012; Quadrianto and Lampert, 2011; Farquhar

et al, 2005; Diethe et al, 2010, etc.) addresses the sce-

nario where multiple sets of observations are available

per labeled example, resulting in multiple views of the

data. The views could come from different modalities

or, in vision, different 3D pose of the same object in-

stance. For visual domain adaptation, such methods

have been applied in cases where multiple observations

of the same instance are available (Farhadi and Tabrizi,

2008; Dai et al, 2008; Li and Zickler, 2012). For exam-

ple, Kan et al (2012) use multi-view learning on multi-

ple views of the same face to perform face recognition

across pose variation. In contrast to classifier adapta-

tion described above, such methods attempt to learn a

perturbation over the feature space, rather than a class-

specific perturbation of the model parameters, typically

in the form of a transformation matrix or modified ker-

nel. In particular, Farhadi and Tabrizi (2008) as well as

Li and Zickler (2012) translate features between camera

views to transfer activity models, while Dai et al (2008)

translated between text and image domains.

Our method can handle multiple views, i.e. data

with instance constraints, when available; however, un-

like multi-view learning, it can also handle the case

of multiple object category datasets that have no in-

stances in common, and only share the same category

labels.

Hybrid supervised methods Instead of choosing

either feature transformation or classifier adaptation, it

is possible to combine the two approaches, as we do in

this paper with mmdt. The approach most closely re-

lated to ours is the recent Heterogeneous Feature Aug-

mentation (HFA) method (Duan et al, 2012a), which

learns a feature transformation into a common latent

space, as well as the classifier parameters. However, in

contrast to mmdt, hfa is formulated to solve a bi-

nary problem, so a new feature transformation must

be learned for each category. Therefore, unlike mmdt,

hfa cannot learn a representation that generalizes to

novel target categories. Furthermore, our method has

better computational complexity.

Semi- and Un-supervised methods While we do

not discuss in detail it here, in Donahue et al (2013)

we presented a semi-supervised extension of our model,

adding constraints between unlabeled target points to
the labeled constraints. For example, we placed smooth-

ness constraints on examples that lay on a consistent

motion path and could thus be hypothesized to have the

same, albeit unknown, label. Domain adaptation in a

purely unsupervised setting (no labeled target domain

examples) has been considered by Gopalan et al (2011)

and Gong et al (2012). The main idea of both works is

to build subspaces for the source as well as the target

domain and to consider the path between them on the

corresponding manifold. A new feature representation is

calculated by concatenating intermediate subspaces on

the path. Whereas, Gopalan et al (2011) samples a finite

set of intermediate subspaces, the Geodesic Flow Kernel

(gfk) of Gong et al (2012) shows how to use all sub-

spaces on the geodesic path by using a kernel trick. This

yields a symmetric kernel for source and target points

that can be used for example for nearest neighbor clas-

sification. More recently, (Chopra et al, 2013) extended

this framework to handle image features learned using

deep convolultional neural networks.
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3 Category Invariant Feature Transformations

Our first approach is to learn a single transformation

matrix W which maps examples between the source

and target domains. The objective for the transforma-

tion is to diminish domain-induced differences so that

examples can be compared directly. This mapping step

can then be followed by standard distance-based learn-

ing.

We denote the source domain as X and the tar-

get domain as Z. Similarly, we denote the source data

points as X = [x1, . . . ,xnX ] ∈ RdX×nX with labels

y = [y1, . . . , ynX ] and the target data points as Z =

[z1, . . . , znZ ] ∈ RdZ×nZ with corresponding labels h =

[h1, . . . , hnZ ]. The target domain is assumed to have sig-

nificantly fewer labeled examples than the source, i.e.

nZ � nX , and there may even be some categories for

which the target domain has no labeled examples. We

use whichever categories have labeled target examples

to learn a transformation that is generalizable across

categories and so can be applied to all categories at

test time. Note that our algorithm allows the source

and target feature spaces to have different dimensions

(dX 6= dZ).

To learn such a transformation we will define a ma-

trix regularizer, r(W ) and a loss, L(W ,X,Z,y,h), which

are computed as some function of the category labeled

source and target data1. With these two terms defined

we solve the following general optimization problem:

Ŵ = arg min
W

r(W ) + λ · L(W ,X,Z,y,h) (1)

We present multiple learning algorithms that arise from

using different regularizers and loss functions within the

framework of Equation (1).

4 Category Invariant Feature Transformations

through Similarity Constraints

Learning a transformation can be also viewed as learn-

ing a similarity function between source and target points,

sim(W ,x, z) = xTW z. This perspective allows us to

use metric learning techniques (Davis et al, 2007) and

to extend them towards a domain adaptation scenario.

Intuitively, a desirable property of this similarity func-

tion is that it should have a high value when the source

and target points are of the same category and a low

1 Note that in general we could equally optimize a second
loss function between the source and target data which con-
siders instance level constraints. However, to distinguish our-
selves from prior work which focused on learning a metric
requiring instance constraints, we present our algorithms as-
suming only category level information to demonstrate the
effectiveness of using only this coarser level of supervision.

value when the source and target points are of different

categories.

This intuitive goal can be formulated by construct-

ing a constraint for each pair ({x, y}, {z, h}) of labeled

source and target points:

c(W ,x, z, y, h) :=

{
sim(W ,x, z) > u y = h

sim(W ,x, z) < l y 6= h
, (2)

for some constants, u, l ∈ R.

If optimized, the constraints specified in Equation (2)

guarantee that source and target points with the same

label have high similarity and that source and target

points with different labels have low similarity.

In general, we do not need each pairwise constraint

to be satisfied to learn a good similarity function, there-

fore, we optimize soft constraints in the form of the

following loss function:

`(W ,x, z, y, h) =


max(0, sim(W ,x, z)− u)

if y = h

max(0, l − sim(W ,x, z))

if y 6= h

(3)

Finally, we define a loss for all labeled data points as

the squared sum over each pairwise loss:

L(W ,X,Z,y,h) =
∑
i,j

[`(W ,xi, zj , yi, hj)]
2 . (4)

Using this loss function in the general framework of

Equation (1), we seek to solve the following optimiza-

tion problem:

Ŵ = arg min
W

r(W ) +
∑
i,j

[`(W ,xi, zj , yi, hj)]
2 . (5)

Constraints thus far have been defined for category level

correspondences, however, if additional paired instance

correspondence is available for some data, this auxiliary

information could be incorporated using the same sim-

ilarity constraint technique. In Donahue et al (2013),

we also showed that constraints between labeled and

unlabeled target points can help learning in a semi-

supervised fashion.

An important second part of the objective function

as defined in Section 3 is the regularizer of the transfor-

mation matrix. This term contains our prior knowledge

about the transformation and has to be chosen care-

fully. We present two types of very flexible regulariza-

tion terms in the following sections.

4.1 LogDet Regularizer for Symmetric Transforms

We will begin by considering the log determinant (LogDet)

regularizer:

r(W ) = tr(W )− log det(W ) (6)
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for positive definite matrices W .

Using the LogDet regularizer causes the formula-

tion in Equation (5) to become equivalent to that of

Information-theoretic Metric Learning (ITML), which

indirectly learns a transformation matrixW correspond-

ing to a linear transformation between X and Z by

optimizing the pairwise loss functions given in Equa-

tion (5).

With this regularization term, the optimization func-

tion is kernelizable and a final non-linear transforma-

tion can be learned to map between the source and

target points.

While this model is intuitively appealing for domain

adaptation, it requires a key simplifying assumption

that the source and target data have the same dimen-

sion; i.e., dX = dZ . This follows from the fact that

the matrix trace and determinant are only defined for

square matrices W . An even stronger restriction on W

made by the LogDet regularizer is that it is only defined

over symmetric positive definite matrices. Implicitly, if

W is positive definite then W can be decomposed into

the product of two identical matrices - W = RTR.

Therefore, the similarity function learned can be de-

composed into:

sim(W ,x, z) = xTW z = (Rx)T (Rz) (7)

The observation here is that a symmetric positive defi-

nite matrix corresponds to applying the same transfor-

mation to the source and target domains.

Using the LogDet regularizer limits the applicability

of domain adaptation due to the restricted class of pos-

sible transformation matricesW . Consider the scenario
in Figure 2, where there is no symmetric transforma-

tion that can transform between the source and target

domains. In the next section, we will mitigate this lim-

itation.

4.2 Frobenius Regularizer for Asymmetric Transforms

In order to avoid the restrictions of the symmetric trans-

formation model for adaptation, we seek an alternative

regularizer that allows the model to be applied to do-

mains of differing dimensionalities but that still retains

the benefits of kernelization. We choose the Frobenius

norm regularizer, which is defined for general matrices

W in asymmetric transformations (Figure 2). We call

this problem the Asymmetric Regularized Cross-

domain transformation problem with similarity and

dissimilarity constraints, or arc-t for short, in the rest

of the paper.

(a)   A symmetric transformation – the same rotation and 
scaling applied to both domains (green and blue) – cannot 

separate classes (circles and squares)

(b)   An asymmetric transformation – a rotation applied   
only to blue domain – successfully compensates for 

domain shift

Fig. 2 A conceptual illustration of how an asymmetric do-
main transformation matrix corresponding to a linear trans-
formation can be more flexible than a symmetric one.

Using the loss function defined in Equation (5), our

new optimization objective is given as follows:

min
W

1

2
‖W ‖2F + λ

∑
i,j

[`(W ,xi, zj , yi, hj)]
2 (8)

There are two main limitations of the transformation

learning problem (8) presented above. First, it is lim-

ited to linear transformation matrices, which may not

be sufficient for some adaptation tasks. Second, the size

ofW grows as dX ·dZ , which may be prohibitively large

for some problems. In the next section, we present a

kernelization result that overcomes both of these short-

comings.

4.3 Kernelization Analysis

In this section, we prove that (5) may be solved in ker-

nel space for a wide class of regularizers, resulting in

non-linear transformation matrices whose complexity

is independent of the dimensions of the points in ei-

ther domain. This kernelization result is critical to ob-

taining good performance for several domain adapta-

tion tasks. Note that kernelization has been proven for

some metric learning formulations, such as Kulis et al

(2009); in all these cases, the kernelization results as-

sume that W is symmetric positive definite, whereas

our results hold for arbitrary W . We also note con-

nections to the work of Argyriou et al (2010), which

derives representer theorems for various matrix learn-

ing problems. However, they do not consider domain

adaptation, and are mainly concerned with theoretical

results for matrix learning problems such as collabora-

tive filtering and multi-task learning.
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The main idea behind the following result is to show

that 1) the learned similarity function resulting from

solving Equation (5) can be computed only using in-

ner products between data points in the source domain

and inner products between data points in the target

domain, and 2) Equation (5) can be reformulated as

an optimization problem involving such inner products

and whose size is independent of the dimensions dX
and dZ . Then we can replace standard inner products

with arbitrary kernel functions such as the Gaussian

RBF kernel function, resulting in non-linear learned

transformations between the input space of the source

domain and the input space of the target domain. In

the following analysis, the input kernel matrices over

within-domain points are given as KX = XTX and

KZ = ZTZ. We begin with the first result (proof in

Appendix).

Lemma 1 Assume that KX and KZ are strictly posi-

tive definite2.

Then there exists an nX × nZ matrix L such that

the optimal solution W ∗ to (5) is of the form W ∗ =

XK
−1/2
X LK

−1/2
Z ZT .

The above result demonstrates the existence of such

a matrix L, which is important to reformulate the op-

timization problem in eq. (8) in terms of L in the fol-

lowing. Furthermore, one important consequence of the

above lemma is that, given arbitrary points x and z,

the function sim(W ,x, z) can be computed in kernel

space—by replacing W with XK
−1/2
X LK

−1/2
Z ZT , the

expression xTW z can be written purely in terms of

inner products.

Note that we present this result for the specific case

of using the Frobenius norm regularizer, though in fact

our analysis holds for the class of regularizers r(W )

that can be written in terms of the singular values of

W ; that is, if σ1, ..., σp are the singular values of W ,

then r(W ) is of the form
∑p

j=1 rj(σj) for some scalar

functions rj . For example, the squared Frobenius norm

r(W ) = 1
2‖W ‖

2
F is a special case where rj(σj) = 1

2σ
2
j .

Additionally, if W was a square matrix, then an

extended analysis would also hold for regularizations of

the form ||W −A||2F , where A is some known matrix,

for example the identity matrix. Regularizations of this

form may be useful if there exists some prior knowledge

about the domain shift or if W is assumed to be close

to the identity matrix, in which case A is set to I.

2 The assumption that the kernel matrices are strictly pos-
itive definite is not a severe limitation. For the Gaussian RBF
kernel, strict positive definiteness can always be assured and
for other kernel functions, the matrices can be regularized by
adding a scaled identity matrix.

Using the above lemma, we now show how to equiv-

alently rewrite the optimization (8) in terms of the ker-

nel matrices KX and KZ to solve for L (proof in Ap-

pendix):

Theorem 1 Assume the conditions of Lemma 1 hold.

If W ∗ is the optimal solution to (8) and L∗ is the op-

timal solution to the following problem:

min
L
r(L) + L(L,K

1/2
X ,K

1/2
Z ,y,h) (9)

then W ∗ = XK
−1/2
X L∗K

−1/2
Z ZT .

To summarize, Theorem 1 demonstrates that, in-

stead of solving (8) for W directly, we can equiva-

lently solve (9) for L, and then implicitly construct W

via W = XK
−1/2
X LK

−1/2
Z ZT . In particular, this form

of W allows us to compute xTW z using only kernel

functions. Though our analysis focuses on one particu-

lar regularizer—the squared Frobenius norm—one can

imagine applying our analysis to other regularizers. For

example, the trace norm r(W ) = tr(W ) also falls under

our framework; because the trace norm as a regularizer

is known to produce low-rank matrices W , it would

be desirable in kernel dimension-reduction settings. In

showing kernelization for this regularizer, we actually

prove a much stronger result, namely that kerneliza-

tion holds for a large class of regularizers that includes

the squared Frobenius norm and other regularizers, as

discussed in Section 4.3.

Whether using the linear or kernelized version of the

algorithm, the general idea of using pairwise constraints

to learn W limits the ability of this learning algorithm

to scale with the number of labeled points in the source

and target, since the number of constraints generated is

nX ·nZ . Additionally,W is learned so as to place source

and target points close if they are of the same category

and far if they are from different categories. While this

is an intuitive notion, it fails to directly optimize the

overall objective of correctly classifying target points.

In the next section, we describe an alternate approach

which overcomes these limitation by jointly learning W

and classifier parameters.

4.4 Optimization

In this section, we briefly describe optimization tech-

niques that can be used to solve the objectives de-

scribed.

When optimizing the objective with a LogDet norm

regularizer, we use the standard ITML method as men-

tioned in Section 4.1. To optimize the objective with the

Frobenius norm regularizer, we use one of two methods.
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(a) SOURCE (b) TARGET, no adaptation (c) TARGET, existing methods (d) TARGET, our method 

unlabeled 

labeled 

Fig. 3 (a) Linear classifiers (shown as decision boundaries)
learned for a four-class problem on a fully labeled source do-
main. (b) Problem: classifiers learned on the source domain do
not fit the target domain points shown here due to a change
in feature distribution. (c) Existing SVM-based methods only
adapt the features of classes with labels (crosses and trian-
gles). (d) Our method adapts all points, including those from
classes without labels, by transforming all target features to
a new domain-invariant representation.

First, note that the problem can actually be reformu-

lated as a quadratic programming (QP) problem, after

which any standard QP solver can be used to optimize

our objective. However, if the size of W is too large,

this is impractical. A separate approach is to use the

Bregman divergence method (Davis et al, 2007). Both

techniques yield similar performance, but have varying

convergence rates.

5 Category Invariant Feature Transformations

through Optimizing Classification Objective

In this section, we present a different loss function that

can be used within the transform-based domain adap-

tation framework defined in Equation (1). The goal now

is to directly optimize a classification objective for the

target points, while simultaneously presenting a learn-

ing algorithm that is more scalable with the number of

labeled source and target points (Figure 3).

For our algorithm, we consider linear hyperplane

classifiers. For example, assume that a one-versus-all

linear SVM classifier has been trained on the labeled

source data over all K categories. Let θk denote the

normal to the hyperplane associated with the k’th bi-

nary SVM problem. Similarly, let bk be the offset to

the hyperplane associated with the k’th binary SVM

problem. Finally, let θ̃Tk =
[
θTk bk

]
be the full affine

hyperplane representation.

Intuitively, we seek to learn a transformation matrix

W such that once W is applied to the target points,

they will be classified accurately by the source SVM.

We consider learning an affine linear transformation

matrix, which can be easily done using homogeneous

coordinates for our data points: z̃T =
[
zT 1

]
.

The key idea is now to use constraints based on lin-

ear classifiers instead of single instances. In particular,

we require that transformed target points are correctly

classified in the source domain:

c(W , θ̃k, z̃, h) := I(h = k)
(
θ̃TkW z̃

)
≥ 1 , (10)

where I is the signed indicator function, with I(z) = 1

when z is true and I(z) = −1 in the other case. If

Equation (10) is fulfilled, all transformed target points

would be correctly classified by the source linear classi-

fier. However, this is only possible for separable cases,

so instead we optimize the soft constraints in form of

the hinge loss:

`(W , θ̃k, zi, hi) = max(0, 1− I(hi = k) · θ̃TkW z̃i) (11)

Similarly, if we use Θ =
[
θ̃1 . . . θ̃K

]
to denote all hy-

perplane parameters of the one-versus-all classifier, the

loss over all target points and all categories is given as:

L(W ,Θ,Z,h) =
∑
k,i

`(W , θ̃k, zi, hi) (12)

Because the target points are transformed into the source

domain space withW , we simply define the source data

term in our loss function as standard SVM hinge loss

summed over all categories:

L(Θ,X,y) =
∑
k,i

max(0, 1− I(yi = k) · θ̃Tk xi) (13)

Once the transformation matrix W has been learned,

we can also use it to transform linear classifiers θ̃k to

the target domain that had been learned with source

data only. This is a huge advantage of modelling the

domain shift as being category-invariant, because we

only need a few categories present in both target and

source training data and are able to transfer all avail-

able category models in the source domain to the target

domain. For regularization of W , we use the Frobenius

norm regularizer for this optimization problem. Opti-

mizing this objective in Equation (1) using the loss

in Equation (11) and the Frobenius norm regularizer

leads to a category invariant and asymmetric transfor-

mation matrix, which considers classifier constraints in

the source domain. Additionally, the learning algorithm

no longer has a linear dependency on the number of

source training examples and instead scales with the

number of categories and the number of labeled target

points, K · nZ .

6 Jointly Optimizing Classifier and

Transformation

Our goal in this section is to jointly learn 1) affine

hyperplanes that separate the categories in the com-

mon domain consisting of the source domain and target

points projected to the source and 2) the new feature

representation of the target domain determined by the

transformation matrixW mapping points from the tar-

get domain into the source domain.

The algorithm and the change of constraints pre-

sented in the previous section is especially useful when
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linear classifiers are already learned in the source do-

main. However, we can also formulate a joint learning

problem for the transformation matrix and the clas-

sifier parameters; i.e., the hyperplane parameters and

thus the decision boundary are also affected by the ad-

ditional training data provided from the target domain.

The transformation matrix should have the prop-

erty that it projects the target points onto the correct

side of each source hyperplane and the joint optimiza-

tion also maximizes the margin between two classes.

Therefore, we refer to this method as Maximum Mar-

gin Domain Transform, or mmdt.

The joint optimization problem can be formulated

by adding a regularizer on Θ.

min
W ,Θ

1

2
‖W ‖2F +

1

2
‖Θ‖2F + λL(W ,Θ,Z,h) (14)

+λX L(Θ,X,y)

In contrast to the previous optimization problems, the

problem in Equation (14) is no longer convex. For this

reason, we perform coordinate gradient descent by al-

ternating between optimizing with respect to W and

Θ:

1. Initialize Θ0 using a 1-vs-all SVM trained on the

source data only.

2. Learn W t assuming fixed Θt.

3. Learn Θt+1 assuming fixed W t.

4. Iterate between (2)-(3), until convergence.

Note that step (2) is equivalent to solving the optimiza-

tion problem presented in Section 5. Additionally, note

that step (3) is equivalent to solving a multi-category

SVM problem defined over source and transformed tar-

get data points. This can again be solved using K 1-vs-
all binary SVM classifiers.

An important property of the alternating optimiza-

tion is that we can indeed prove convergence by exploit-

ing the convexity of both sub-problems.

Lemma 2 Steps (2) and (3) will never increase the

complete joint objective function.

Proof Let J(W ,Θ) denote the value of the joint objec-

tive function.

Claim 1: J(W t,Θt) ≥ J(W t+1,Θt)

J(W t+1,Θt) = min
W

J(W ,Θt) ≤ J(W t,Θt)

Claim 2: J(W t+1,Θt) ≥ J(W t+1,Θt+1)

J(W t+1,Θt+1) = min
Θ

J(W t+1,Θ) ≤ J(W t+1,Θt)

The key here is that steps (2) and (3) of our algorithm

are convex optimization problems and so we know that

each objective will never increase as the new variable

values are learned.

Theorem 2 The joint objective function for Eq. (14)

will converge.

Proof Using Lemma (2), we can directly show that the

joint objective function will not increase from one iter-

ation to the next:

J(W t,Θt) ≥ J(W t+1,Θt) ≥ J(W t+1,Θt+1)

Additionally, since the joint objective is lower bounded

by zero, this proves that the joint objective will con-

verge for a sufficiently small step size if optimizing using

gradient descent.ut

It is important to note that since both steps of our

iterative algorithm can be solved using standard QP

solvers, the algorithm can be easily implemented. Fur-

thermore, we also developed a fast optimization tech-

nique based on dual coordinate descent and exploiting

an implicit rank contraint of W in Rodner et al (2013).

The method allows using the MMDT algorithm even

in large-scale scenarios with tens of thousands of exam-

ples and high-dimensional features, because not all of

the entries of W have to be optimized.

7 Analysis

We now analyze and compare the proposed algorithms

against each other and the previous feature transform

methods hfa (Duan et al, 2012a) and gfk (Gong et al,

2012). Comparisons are summarized in Table 1.

The arc-t formulation, of Section 4, has two dis-

tinct limitations. First, it must solve nX ·nZ constraints,

whereas mmdt, of Section 6, only needs to solve K ·
nZ constraints, for a K category problem. In general,

mmdt scales to much larger source domains than arc-

t. The second benefit of the mmdt learning approach

is that the transformation matrix learned using the

max-margin constraints is learned jointly with the clas-

sifier, and explicitly seeks to optimize the final SVM

classifier objective. While arc-t’s similarity-based con-

straints seek to map points of the same category ar-

bitrarily close to one another, followed by a separate

classifier learning step, mmdt seeks simply to project

the target points onto the correct side of the learned hy-

perplane, leading to better classification performance.

The hfa formulation (Duan et al, 2012a) also takes

advantage of the max-margin framework to directly op-

timize the classification objective while learning trans-

formation matrices. hfa learns the classifier and trans-

formations to a common latent feature representation

between the source and target. However, hfa is formu-

lated to solve a binary problem so a new feature trans-

formation must be learned for each category. Therefore,
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hfa gfk symm arc-t mmdt

multi-class no yes yes yes yes
large datasets no yes no no yes
heterogeneous features yes no no yes yes
optimize max-margin objective yes no no no yes

Table 1 Unlike previous methods (hfa by Duan et al (2012a) and gfk by Gong et al (2012)), our final approach using
max-margin constraints and frobenius norm regularizer is able to simultaneously learn muti-category representations that can
transfer to novel classes, scale to large training datasets, and handle different feature dimensionalities.

unlike mmdt, hfa cannot learn a representation that

generalizes to novel target categories. Additionally, due

to the difficulty of defining the dimension of the la-

tent feature representation directly, the authors opti-

mize with respect to a larger combined transformation

matrix and a relaxed constraint. This transformation

matrix becomes too large when the feature dimensions

in source and target are large, so the hfa problem must

usually be solved in kernel space. This can make the

method slow and cause it to scale poorly with the num-

ber of training examples. In contrast, mmdt can be ef-

ficiently solved in linear feature space which makes it

fast and potentially more scalable.

Finally, gfk (Gong et al, 2012) formulates a ker-

nelized representation of the data that is equivalent to

computing the dot product in infinitely many subspaces

along the geodesic flow between the source and target

domain subspaces. The kernel is defined to be symmet-

ric, so it cannot handle source and target domains of

different initial dimension. Additionally, gfk does not

directly optimize a classification objective. In contrast,

mmdt can handle source and target domains of differ-

ent feature dimensions via an asymmetric W , as well

as directly optimizing the classification objective.

8 Domain Adaptation Datasets

We begin by introducing the data on which we will

evaluate our algorithms.

8.1 Office database

In most of our experiments, we consider the Office da-

tabase first introduced by Saenko et al (2010), which

has become the de facto standard for benchmarking vi-

sual domain adaptation methods. This database allows

researchers to study, evaluate and compare solutions to

the domain shift problem by establishing a multiple-

domain labeled dataset and benchmark. In addition to

the domain shift aspects, this database also proposes

a challenging office environment category learning task

which reflects the difficulty of real-world indoor robotic

object recognition. It contains images originating from

the following three domains:

Images from the web: The first domain, amazon,

consists of images downloaded from online merchants

(www.amazon.com). These images are of products shot

at medium resolution typically taken in an environment

with studio lighting conditions. The amazon domain

contains 31 categories with an average of 90 images

each. The images capture the large intra-class varia-

tion of these categories, but typically show the objects

only from a canonical viewpoint.

Images from a digital SLR camera: The second

domain, dslr, consists of images that are captured with

a digital SLR camera in realistic environments with nat-

ural lighting conditions. The images have high resolu-

tion (4288×2848) and low noise. dslr has images of the

31 object categories, with 5 different objects for each, in

an office environment. Each object was captured with

on average 3 images taken from different viewpoints,

for a total of 423 images.

Images from a webcam: The third domain, web-

cam, consists of images of the 31 categories recorded

with a simple webcam. The images are of low resolu-
tion (640×480) and show significant noise and color as

well as white balance artifacts. Many current imagers

on robotic platforms share a similarly-sized sensor, and

therefore also possess these sensing characteristics. The

resulting webcam dataset contains the same 5 objects

per category as in dslr, for a total of 795 images.

The database represents several interesting visual

domain shifts. It allows us to investigate the adapta-

tion of category models learned on the web to SLR and

webcam images, which can be thought of as in situ ob-

servations on a robotic platform in a realistic office or

home environment. Furthermore, domain transfer be-

tween the high-quality DSLR images to low-resolution

webcam images allows for a very controlled investiga-

tion of category model adaptation, as the same objects

were recorded in both domains.

The Office dataset images are available together

with SURF BoW features that are vector quantized

to 800 dimensions. We use these features in all experi-

ments except where explicitly indicated otherwise.
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We also use a version of the Office dataset, avail-

able from Gong et al (2012), which consists of the 10

categories from the Office dataset that also appear in

Caltech256. The same SURF BoW 800-dimensional fea-

tures are available for the Caltech256 images.

8.2 Large-scale database

We also demonstrate the efficiency of our domain adap-

tation methods in a large-scale setting (Section 9.4). For

this purpose, we consider two domains. The source do-

main, the Bing dataset (Bergamo and Torresani, 2010),

consists of images obtained using the Bing search en-

gine. In our experiments, we train on 50 source domain

examples per category. The target domain is a subset

of the images in the Caltech-256 benchmark dataset.

We vary the number of target domain examples from 5

to 20.

Note that we use the original features (Classeme

2625 dimensional) and train/test splits introduced by

Bergamo and Torresani (2010).

9 Experiments

In the following, we evaluate our methods on the datasets

described in the previous section and compare the re-

sults to state-of-the-art supervised domain adaptation

methods in different domain adaptation scenarios. In

particular, we compare against the following methods

in the experiments where applicable:

svms A support vector machine using source training

data.

svmt A support vector machine using target training

data.

hfa A max-margin transform approach that learns a

latent common space between source and target as

well as a classifier that can be applied to points in

that common space (Duan et al, 2012a).

gfk The geodesic flow kernel proposed by Gong et al

(2012) applied to all source and target data (includ-

ing test data). Following Gong et al (2012), we use a

1-nearest neighbor classifier with the geodesic flow

kernel.

9.1 Standard supervised domain adaptation

In our first set of experiments, we use the 10 category

subset of the Office database, together with the same 10

categories available from the Caltech dataset, to evalu-

ate multi-class accuracy in the standard domain adap-

tation setting where a few labeled examples are avail-

able for all categories in the target domain. We follow

the setup of Saenko et al (2010) and Gong et al (2012):

20 training examples for amazon source (8 for other

source domains) and 3 labeled examples per category

for the target domain. We created 20 random train/test

splits and averaged the results across them.

The multi-class accuracy for each domain pair is

shown in Table 2. Our mmdt method is the top per-

forming overall, achieving 52.5% accuracy averaged over

the 12 domain shifts we explored. This result may be

somewhat surprising, because mmdt encodes no knowl-

edge of the feature representation, but on shifts where

features are homogeneous, still outperforms methods

like gfk and symm which assume feature homogeneity.

This demonstrates the strength of mmdt as a generic

domain adaptation approach.

Looking at individual domain shifts, we see that

mmdt outperforms all other methods in 6 out of the

12 domain shifts. Of the results on the Office dataset

only (the first 6 rows of Table 2), mmdt performs the

best when either the source or target domain is ama-

zon. Because the shift between amazon and either of the

other two Office domains (dslr and webcam) is much

more significant than the shift between dslr and web-

cam, as indicated by the large performance discrepancy

between amazon and non-amazon shifts with the svmS

method, this result indicates that mmdt is particularly

well-suited to handling larger domain shifts.

Our other methods, symm and arc-t, have bet-

ter performance than mmdt (and all baselines) on the

webcam and dslr shifts. This demonstrates the utility of

these methods in learning smaller domain shifts. Their

higher relative performance on such tasks might be due

to their cross-domain pairwise constraints on individ-

ual examples, which may be less meaningful in cases

when the domain shift is larger and individual pairs

of examples from a particular category are unlikely to

correspond. The gfk baseline also performs well on the

webcam and dslr shifts. This fits with our intuition since

gfk is a 1-nearest neighbor approach and, as such, is

more suitable when the domains are initially similar.

In the caltech results (the last 6 rows of Table 2), we

see that the task overall is much easier when caltech is

the source domain than when it is the target domain,

indicating that the caltech data is more valuable for

recognition in the Office domains than the Office data

is for recognition of the caltech categories. When cal-

tech is the target domain, the more difficult of the two

situations, our symm method outperforms all others.

On the other hand, when caltech is the source domain,

we see the best performance from our mmdt method

and the gfk baseline, with our arc-t method perform-

ing somewhere in between in most cases. This seems

to indicate that mmdt is the best of the methods ex-
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Baselines Our Methods
svms svmt hfa gfk symm arc-t mmdt

a → w 33.9 ± 0.7 62.4 ± 0.9 61.8 ± 1.1 58.6 ± 1.0 51.0 ± 1.4 55.7 ± 0.9 64.6 ± 1.2
a → d 35.0 ± 0.8 55.9 ± 0.8 52.7 ± 0.9 50.7 ± 0.8 47.9 ± 1.4 50.2 ± 0.7 56.7 ± 1.3
w → a 35.7 ± 0.4 45.6 ± 0.7 45.9 ± 0.7 44.1 ± 0.4 43.7 ± 0.7 43.4 ± 0.5 47.7 ± 0.9
w → d 66.6 ± 0.7 55.1 ± 0.8 51.7 ± 1.0 70.5 ± 0.7 69.8 ± 1.0 71.3 ± 0.8 67.0 ± 1.1
d → a 34.0 ± 0.3 45.7 ± 0.9 45.8 ± 0.9 45.7 ± 0.6 42.7 ± 0.5 42.5 ± 0.5 46.9 ± 1.0
d → w 74.3 ± 0.5 62.1 ± 0.8 62.1 ± 0.7 76.5 ± 0.5 78.4 ± 0.9 78.3 ± 0.5 74.1 ± 0.8
a → c 35.1 ± 0.3 32.0 ± 0.8 31.1 ± 0.6 36.0 ± 0.5 39.1 ± 0.5 37.0 ± 0.4 36.4 ± 0.8
w → c 31.3 ± 0.4 30.4 ± 0.7 29.4 ± 0.6 31.1 ± 0.6 34.0 ± 0.5 31.9 ± 0.5 32.2 ± 0.8
d → c 31.4 ± 0.3 31.7 ± 0.6 31.0 ± 0.5 32.9 ± 0.5 34.9 ± 0.4 33.5 ± 0.4 34.1 ± 0.8
c → a 35.9 ± 0.4 45.3 ± 0.9 45.5 ± 0.9 44.7 ± 0.8 43.8 ± 0.6 44.1 ± 0.6 49.4 ± 0.8
c → w 30.8 ± 1.1 60.3 ± 1.0 60.5 ± 0.9 63.7 ± 0.8 50.5 ± 1.6 55.9 ± 1.0 63.8 ± 1.1
c → d 35.6 ± 0.7 55.8 ± 0.9 51.9 ± 1.1 57.7 ± 1.1 48.6 ± 1.1 50.6 ± 0.8 56.5 ± 0.9

mean 40.0 ± 0.6 48.5 ± 0.8 47.4 ± 0.8 51.0 ± 0.7 48.7 ± 0.9 49.5 ± 0.6 52.5 ± 1.0

Table 2 Multi-class accuracy for the standard supervised domain adaptation setting. All results are from our implementation.
When averaged across all domain shifts the reported average value for gfk was 51.65 while our implementation had an average
of 51.0±0.7. Therefore, the result difference is well within the standard deviation over data splits. Red indicates the best result
for each domain split. Blue indicates the group of results that are close to the best-performing result. The domain names are
shortened for space: a: amazon, w: webcam, d: dslr, c: caltech.

plored when working with a very rich source domain

(at least relative to the target domains) like caltech,

whereas symm is superior when the source domain is

more homogeneous like the Office domains.

9.2 Asymmetric features

Next, we analyze the effectiveness of our asymmetric

transform learning methods by experimenting with the

setting when source and target have different feature di-

mensions. We use the same experimental setup as pre-

viously, but use the full 31 category Office dataset and

an alternate representation for the dslr domain, which

is SURF BoW quantized to 600 dimensions (denoted as

dslr-600 ). We compare our mmdt and arc-t methods

against svmt and hfa. Note that our symm method

and some baseline methods (svms, gfk) are not suited

for the asymmetric feature case, as they assume a con-

sistent feature representation across domains. The re-

sults are shown in Table 3. Again, we find that our

mmdt method can effectively learn a feature represen-

tation for the target domain that optimizes a classifi-

cation objective. Our arc-t method has lower accuracy

on this task than mmdt, but these results show that

it still effectively leverages the source domain data by

achieving much higher accuracy than the svmt baseline

which ignores the source domain.

9.3 Novel categories

We next consider the setting of practical importance

where labeled target examples are not available for all

source svms gfk arc-t mmdt

amazon 10.3 ± 0.6 38.9 ± 0.4 41.4 ± 0.3 44.6 ± 0.3
webcam 51.6 ± 0.5 62.9 ± 0.5 59.4 ± 0.4 58.3 ± 0.5

Table 4 Multi-class accuracy results on the Office dataset for
the domain shift of webcam → dslr for target test categories
not seen at training time.

objects. Recall that this is a setting that many category

specific adaptation methods cannot generalize to, in-

cluding hfa (Duan et al, 2012a) and our symm method.

Therefore, we compare results from our mmdt and
arc-t methods, which learn category independent fea-

ture transforms, to the gfk method of Gong et al (2012),

which learns a category independent kernel to compare

the domains. We use the full Office dataset and allow

20 labeled examples per category in the source for ama-

zon and 10 labeled examples for the first 15 object cate-

gories in the target (dslr). For the webcam → dslr shift,

we use 8 labeled examples per category in the source for

webcam and 4 labeled examples for the first 15 object

categories in the target dslr.

The experimental results for the domain shift of

webcam → dslr are evaluated and shown in Table 4.

mmdt outperforms the baselines for the amazon →
dslr shift and offers adaptive benefit over svms for the

shift from webcam → dslr. As in the first set of experi-

ments, both arc-t and gfk use nearest neighbor classi-

fiers on a learned kernel which are more suitable to the

webcam → dslr shift, as these two domains are initially

very similar.
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source target svmt hfa arc-t mmdt

amazon dslr-600 52.9 ± 0.7 57.8 ± 0.6 58.2 ± 0.6 62.3 ± 0.8
webcam dslr-600 51.8 ± 0.6 60.0 ± 0.6 58.2 ± 0.7 63.3 ± 0.5

Table 3 Multi-class accuracy results on the standard supervised domain adaptation task with different feature dimensions in
the source and target. The target domain is dslr for both cases.

9.4 Large-scale data

With our last experiment, we show that our method

not only offers high accuracy performance; it also scales

well with an increasing dataset size. Specifically, the

number of constraints our algorithm optimizes scales

linearly with the number of training points. Conversely,

the number of constraints that need to be optimized for

the arc-t baseline is quadratic in the number of training

points.

To demonstrate the effect that constraint set size

has on run-time performance, we perform experiments

on the Bing (source) and Caltech256 domains described

in Section 8.2. The left-hand plot in Figure 4 presents

multi-class accuracy for this setup. Additionally, the

training time of our method and that of the baselines

is shown on the right-hand plot.

Our mmdt method provides a considerable improve-

ment over arc-t and all the baselines in terms of multi-

class accuracy. It is also considerably faster than all but

the gfk method. Note that hfa and gfk do not vary

significantly as the number of target training points in-

creases. However, for hfa the main bottleneck time is

consumed by a distance computation between each pair

of training points. Therefore, since there are many more

source training points than target, adding a few more

target points does not significantly increase the over-

all time spent for this experiment, but would present a

problem as the size of the dataset grew in general.

10 Conclusion

We have presented a unified framework for learning a

category invariant transformation that has been proven

effective for visual domain adaptation. In particular, we

derive two specific formulations from the general frame-

work, one which is most useful for learning a similar-

ity function between a source and target domain inde-

pendent of the classifier, and another which focuses on

learning linear classifiers in a max-margin framework.

We demonstrated the importance of using a domain

adaptation method to boost overall performance for

visual recognition tasks, and analyze the scenarios in

which a max-margin objective and a transformation-

based approach are most beneficial. In our experiments,

we provided an in-depth analysis and comparison of the

different algorithms we presented and their connection

to other state-of-the-art methods.

In the future, we would like to extend further to a

multi-domain scenario, where lots of labeled and het-

erogenous source data can be exploited to help classifi-

cation in a target domain.
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11 Appendix: Proofs

Proof of Lemma 1: Let W have singular value decomposi-
tionUΣŨT . We can therefore writeW asW =

∑p
j=1 σjujũT

j ,
where p is the rank of W .

Claim: uj ∈ C(X), ũj ∈ C(Z) such that there exists vec-
tors, vj , ṽj where uj = Xvj and ũj = Zṽj .

Proof: Let us consider what would happen if this were
not true. By definition if a vector is not in the column space
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of the matrix then it is in the left-null space of that ma-
trix. Namely, if uj /∈ C(X) then XTuj = 0 and similarly if
ũj /∈ C(Z) then ZT ũj = 0. Now, consider that the constraints
in the optimization problem we are solving only consider W
in terms of the similarity function sim(W ,X,Z) = XTWZ =∑p

j=1 σjX
Tuj ũj

TZ. If either uj /∈ C(X) or ũj /∈ C(Z) then

the corresponding constraint would equal zero and the jth

singular value would be left unconstrained and hence auto-
matically set to zero by the regularizer. Therefore, if a sin-
gular value σj 6= 0 then we know that the corresponding
singular vectors are in the column space of source and target
data.

Following the above claim, let vj , ṽj be the vectors such that
uj = Xvj and ũj = Zṽj . Then we can re-write W as follows:

W =

t∑
j=1

σjujũ
T
j =

t∑
j=1

σjXvj ṽ
T
j ZT

= X

( t∑
j=1

σjvj ṽ
T
j

)
ZT = XL̃ZT ,

where L̃ =
∑t

j=1 σjvj ṽ
T
j . With the transformation L =

K
1/2
X L̃K

1/2
Z , we can equivalently write

W = XK
−1/2
X LK

−1/2
Z ZT , which proves the lemma and will

simplify the theorem proof.

Proof of Theorem 1: Denote VX = XK
−1/2
X and VZ =

ZK
−1/2
Z . Note that VX and VZ are orthogonal matrices.

From the lemma, W = VXLV T
Z ; let V ⊥X and V ⊥Z be the or-

thogonal complements to VX and VZ , and let V̄X = [VX V ⊥X ]
and V̄Z = [VZ V ⊥Z ]. Then

r

(
V̄X

[
L 0
0 0

]
V̄ T
Z

)
= r

([
W 0
0 0

])
= r(W )+r(0) = r(W )+const.

One can easily verify that, given two orthogonal matrices V1

and V2 and an arbitrary matrix M , r(V1MV2) =
∑

j rj(σj)
if σj are the singular values of M . So

r

(
V̄X

[
L 0
0 0

]
V̄ T
Z

)
=
∑
j

rj(σ̄j) + const = r(L) + const,

where σ̄i are the singular values of L. Thus, r(W ) = r(L) +
const.

Finally, rewrite the similarity values using the previously
derived kernel representation of the transformation matrix

W = XK
−1/2
X LK

−1/2
Z ZT :

sim(W ,X,Z) = XTWZ = KXK
−1/2
X LK

−1/2
Z KZ

= K
1/2
X LK

1/2
Z = sim(L,K

1/2
X

T
,K

1/2
Z )

The theorem follows by rewriting r and the constraints cW
using the above derivations in terms of L. Note that both
r(W ) and the cW can be computed independently of the
dimension of W , so simple arguments show that the opti-
mization may be solved in polynomial time independent of
the dimension when the rj functions are convex.


