Serial Port Communication

Why Serial Port?

- Serial ports are one of the simplest interfaces to get working on a microprocessor.
- As a result, most development boards come equipped with one, and most developers start by getting the serial port to work first.
- Most host PCs are also equipped with at least one serial port, and this makes interfacing to the microprocessor a simple task.

Definitions

- **Serial Communication** occurs when data is transmitted bitwise and in a sequential manner over a single wire.
- **RS232** is a physical interface standard for the interconnection of devices, carrying signals between ±5V and ±12V, as defined by the Electronics Industry Association (EIA). Also referred to as EIA RS-232C.
- **A UART**, or a Universal Asynchronous Receiver/Transmitter is the IC component which manages the transmission and reception of serial data. It converts the serial data to parallel data which can be used by the CPU.
Definitions

- A half-duplex connection is a communications channel where both transmission and reception are possible, but only in one direction at a time.
- A full-duplex connection permits the sending and receiving of data at the same time.
- Baud is the transmission rate at which data communications occurs. It is roughly equal to the number of bits per second. Named for JME Baudot, the inventor of the Baudot telegraph code.
- **MARK** is the idle state of the signal, and negative with respect to the common
- **SPACE** is the active state of the signal, and positive with respect to the common

Serial Communication Interface

- The Serial Communication Interface (SCI) term was coined by Motorola in the 1970s to identify a UART.
- The SCI contains both parallel-to-serial and serial-to-parallel converters, alongside interrupt capabilities and multiple transmit/receive modes.
- Other features include parity checking, error detection, programmable character lengths, and a varying number of stop bits.

Signal Names

- **CTS** – Clear To Send
 - Asserts (logic '0', positive voltage) when the device is ready to receive a transmission.
- **RTS** – Request To Send
 - Asserts (logic '0', positive voltage) when the device is ready to send a message. This can be used to enable a receiver, or be used in half-duplex mode.
- **RxD** – Receive Data
 - Active when the device receives a signal, the idle state defaults to a Mark state (logic '1', or a negative voltage)
- **TxD** – Transmit Data
 - Active when a signal is being transmitted, the idle state defaults to a Mark state (logic '1', or a negative voltage)
RS232

- RS232 uses
 - +3 to +12 volts to indicate an ON (SPACE) state
 - -3 to -12 volts to indicate an OFF (MARK) state
- The “dead area” between -3v and +3v is to prevent noise from affecting communications
- Microprocessor systems which operate on 3 or 5 volts don’t need to provide an extra power source to power the -12 and +12v RS232 circuitry. RS232 chips generate these voltage using a single 3 or 5 volt power source

Transmitting a byte

Timing

- There are two sets of timings to keep in mind
 - Baud rate, which sets the communications speed
 - Inter-byte delay. Some devices, even though they are capable of operating on high baud rates may not be able to accept too many characters back-to-back. This is due to either a small queue size or being busy with other interrupts.
 - In order to avoid an overflow error, either use hardware handshaking, or introduce an inter-byte delay