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Abstract 

A prototype optical system for compact, high-speed zooming is described. The system is enabled by a pair of 
MEMS deformable mirrors (DMs), and is capable of high-speed optical zoom without translation of components. We 
describe experiments conducted with the zoom system integrated with an optical microscope, demonstrating 2.5u zoom 
capability. Zoom is achieved by simultaneously adjusting focal lengths of the two DMs, which are inserted between an 
infinity-corrected microscope objective and a tube lens. In addition to zoom, the test system is demonstrated to be 
capable of automated fine focus control and adaptive aberration compensation. Image quality is measured using contrast 
modulation, and performance of the system is quantified. 
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1. INTRODUCTION 
 
The availability of compact, affordable deformable mirrors (DMs) makes it possible to explore alternatives to 

conventional optical configurations for zoom, focus, and aberration compensation. The proposed zoom approach trades 
component translation for component reshaping. We denote such DM-based zoom as “polymorphic” (literally: of many 
shapes) to differentiate it from conventional zoom lens assemblies that achieve zoom by mechanical translation of rigid 
components. 

 
Various research groups have explored concepts similar to polymorphic zoom and active focusing in the past two 

decades. Much of that research has employed liquid lenses [1-5], spatial light modulators [6-8] or low-order membrane 
deformable mirrors [9-16] in proof-of-principle demonstrations. A general conclusion that can be drawn from this body of 
work is that when high-numerical apertures and off-axis beam paths are combined with active optics in an imaging 
system, the resulting images are often degraded by aberrations. Such aberrations have been characterized and found to be 
substantial for a number of specific active focusing configurations [10, 17, 18]. Recently, two systems with aberration-
compensated optics were reported for active focusing [17] and active zoom [19]. One, developed at National Taiwan 
University, described a prototype autofocus module for consumer cameras that featured a MEMS DM and a rigid 
aspheric mirror that was intended to compensate expected off-axis aberrations. Observed image quality was poor and 
aberrations were not well compensated, but the system did establish a milestone as the first reported compact, active 
focus device with built-in aberration compensation. Another, currently in development at Fraunhofer, described a design 
for an all-reflective zoom. It also incorporated off-axis aspherical mirrors for aberration compensation. The design will 
use purely spherical DM shape control on initially curved DMs (which are not yet available). When completed, the DMs 
will be embedded in an optical zoom system that is statically aberration-compensated for a median zoom setting.  

 
The system and approach described in this paper exploit the inherent capacity of existing DMs to compensate 

aberrations (in addition to changing component focal length), allowing broader flexibility in optical design. A brief 
introduction to active zoom and focus design, operation, and aberration compensation follows. Perhaps more importantly, 
the DM speed allows zooming at frame rates of up to 3kHz – far faster than that achievable with conventional zoom 
optics.  
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Zernike Term Aberration Name Shape PV(nm) Shape RMS(nm) 

3 Astigmatism X -150 -31.4 
4 Defocus -550 -158.9 
5 Astigmatism Y -50 -10.6 
6 Trefoil X -100 -18.0 
7 Coma X 100 18.0 
8 Coma Y -50 -9.0 
9 Trefoil Y 50 9.0 

 
Figure 6: Aberration compensation using open-loop Zernike scanning approach. Top left image: before/after correction. 
Top Right: CTF value vs. each Zernike shape. Bottom: compensation by terms 

 
 

4. CONCLUSION 
 
A polymorphic zoom system with 2.5u zoom and aberration compensation capability was demonstrated on a 

microscope, using a pair of MEMS DMs. Zoom capability depends on both DM separation and DM achievable stroke. 
Aberrations, misalignments, and off-axis beam paths were compensated using the first DM, which was conjugate to the 
objective back pupil plane of the microscope objective.  
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