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Open-loop control of a MEMS deformable mirror
for large-amplitude wavefront control
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A method is introduced for predicting control voltages that will generate a prescribed surface shape on a
MEMS deformable mirror. The algorithm is based upon an analytical elastic model of the mirror membrane
and an empirical electromechanical model of its actuators. It is computationally simple and inherently fast.
Shapes at the limit of achievable mirror spatial frequencies with up to 1.5 �m amplitudes have been achieved
with less than 15 nm rms error. © 2007 Optical Society of America
OCIS codes: 230.4040, 010.1080, 230.6120, 110.6770, 170.4460, 000.2170.
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. INTRODUCTION
he use of microelectromechanical systems (MEMS) de-

ormable mirrors (DMs) for wavefront control in adaptive
ptics (AO) systems is primarily motivated by their high
ctuator density and low cost, which is about ten times
etter than conventional technology [1]. MEMS-based
Ms have also demonstrated subnanometer positioning
recision, repeatability, and stability, making them very
ttractive options for high-contrast astronomical imaging,
ision science, and microscopy applications [1–4].

Controlling a continuous facesheet DM through actua-
ion at discrete points is complicated by the fact that ac-
uators are mechanically coupled to one another through
he mirror facesheet [5]. As a result, the displacement of
ny DM actuator alters the forces experienced by its
eighboring actuators. This phenomenon is common to all
ontinuous facesheet DMs and the degree of mechanical
oupling is often characterized by an influence function,
hich is the ratio of displacement of the DM at an unen-
rgized actuator location to that of the DM at an adjacent
nergized actuator location. Due to this mechanical cou-
ling between adjacent actuators, closed-loop control is
enerally used to achieve highly accurate wavefront cor-
ective shapes.

In closed-loop control a desired mirror shape is
chieved iteratively by measuring wavefront phase errors
nd then using these measurements as feedback to
hange DM actuator control voltages [3–7]. Using MEMS
M technology, residual wavefront errors of better than
nm rms within the control band of the mirror have been

eported [8]. Although closed-loop control is adequate for
ome AO applications, it is problematic for others. For ex-
mple, in light-starved systems, splitting a beam to per-
1084-7529/07/123827-7/$15.00 © 2
orm wavefront sensing worsens the signal-to-noise ratio
f the image. Also, in AO systems that require high-speed
erformance, the control’s iterative approach limits sys-
em bandwidth. Finally, there are some applications for
hich closed-loop DM control is simply not viable. For ex-
mple, in future extremely large telescopes (ELTs), mul-
iobject adaptive optics (MOAO) has been proposed as a
ay to correct wavefront phase errors over the entire tele-

cope field of view [9]. This involves several wavefront
ensing systems that are blind to their corresponding
Ms. To achieve precise DM control in MOAO instru-
ents, an open-loop controller is needed.
Development of an open-loop control algorithm for
EMS DM technology has been approached using em-

irical and mathematical models [10–13]. These algo-
ithms were developed specifically to control MEMS DMs
roduced by Boston Micromachines Corporation (BMC).
orzinski et al. at the Laboratory for Adaptive Optics,
niversity of California, Santa Cruz, developed the most
ccurate open-loop control routine reported thus far,
hich predicts DM control voltages for 500 nm amplitude
irror shapes with residual errors of �15 nm rms [12].
The open-loop control algorithm presented here is

ased upon many of the same assumptions made in the
forementioned work. In particular it uses an empirical
odel to describe the behavior of the electrostatic actua-

or. Where this method differs is in its use of an analytical
odel to describe the loading and deflection of the mirror

urface, incorporating both mirror bending and stretching
ehavior. Using these two models the control voltages for
desired mirror shape are predicted in a single control it-

ration that involves relatively low computation complex-
ty. Mirror shapes with deflection amplitudes of the order
007 Optical Society of America
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f 1.5 �m, as well as shapes at the limit of achievable DM
patial frequencies, have been predicted with better than
5 nm rms accuracy.

. DEVICE
. Architecture
ommercial MEMS DMs based on the devices pioneered
t Boston University (BU) have up to 1024 electrostati-
ally controlled actuators �32�32�, corresponding to a to-
al aperture size of �10 mm. They have the ability to
odulate the spatial and temporal features of an optical
avefront over a range of several micrometers with
anometer-scale repeatability [14,15]. Mirror surface flat-
ess is limited by the microfabrication process and is of
he order of 13 nm rms [8].

DMs are fabricated at a MEMS foundry using a 6�
afer-scale three-layer polycrystalline silicon (polysilicon)

urface micromachining process that uses phosphosilicate
lass (PSG) as a sacrificial material. DMs are also diced
nd released at the foundry. Mirrors are deformed using
urface normal electrostatic actuators (Fig. 1). The actua-
ors are comprised of a compliant electrode diaphragm
second polysilicon layer) supported along two edges
bove a fixed electrode (first polysilicon layer). The top
urface of the actuator diaphragm is connected to the mir-
or surface (third polysilicon layer) by an anchoring post
t its center. The mirror reflectivity is enhanced with a
old or aluminum coating deposited on the final polysili-
on layer.

A 300 �m pitch DM with 2 �m stroke and 144 actua-
ors �12�12� was selected to demonstrate the open-loop
ontrol method presented here. The DM has an aperture
idth of 3.3 mm and a facesheet thickness of 3 �m±5%.
he actuator diaphragm is 2 �m±5% thick, 230 �m wide
nd has a 260 �m span.

. Model
he open-loop control algorithm is based upon a DM
odel that consists of two coupled mechanical sub-

ystems: the continuous facesheet and the array of actua-
ors connected to the facesheet via rigid posts. The control
lgorithm determines the forces involved in this system
hrough an equilibrium force balance at the posts, which
re the points of connection for the two subsystems. This
an be seen in the free body diagram of Fig. 2, where FM
orresponds to the force imparted to the mirror post by
he elastic displacement of the mirror facesheet, FA is the
orce associated with the elastic displacement of the ac-
uator diaphragm, and FE is the electrostatic force asso-

ig. 1. (Color online) Continuous facesheet MEMS DM
echnology.
iated with an applied actuator voltage. The mirror area
ver an actuator is referred to as a mirror subaperture.

The DM facesheet is modeled as a thin plate free on all
dges undergoing both stretching and bending [16,17].
irror deformation varies continuously in both the x and

directions. For displacements smaller than the
acesheet thickness, the deformation is dominated by lin-
ar elastic bending as described by the biharmonic thin
late equation, which assumes negligible in-plane strain
Timoshenko and Woinowsky-Krieger [16], p. 82, Eq. 103):

�4w�x,y� =
q�x,y�

D
, �1�

here q�x ,y� is the surface normal distributed load
N/m2� responsible for producing mirror facesheet deflec-
ion w�x ,y�, and D is the plate flexural rigidity, given by

D =
Eh3

12�1 − �2�
, �2�

here E is Young’s modulus, � is Poisson’s ratio, and h is
he facesheet thickness. As displacement approaches the
hickness of the facesheet, in-plane strain is no longer
egligible and the facesheet begins to stretch as well as
end. This requires the inclusion of a nonlinear stretching
erm in Eq. (1) (Timoshenko and Woinowsky-Krieger [16],
. 378, Eq. 217):

�4w�x,y� =
q�x,y�

D
+

6

h2��� �w�x,y�

�x �2�2w�x,y�

�x2 �
+ �� �w�x,y�

�y �2�2w�x,y�

�y2 �	 . �3�

Equation (3) is the governing equation for out-of-plane
eflections of a linear elastic plate experiencing bending
nd stretching. It assumes that the mirror facesheet only
xperiences surface normal forces and that any lateral
orces can be neglected. It also assumes that there are no
nitial internal stresses in the facesheet. Using this equa-
ion the generalized load q�x ,y� necessary to create a de-
ired (known) mirror shape w�x ,y� can be calculated. In
eality, however, the mirror is loaded only at discrete
oints corresponding to the mirror post locations, and the
eneralized load can be represented by a collection of dis-
rete forces F acting at these post locations. F is esti-

ig. 2. (Color online) Cross section of an actuated DM subaper-
ure (top) and free body diagram for its post (bottom). FM is the
irror force, FA is the actuator restoring force, and FE is the ap-

lied electrostatic force.
M M
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ated at each post by integrating q�x ,y� over each DM
ubaperture, as shown in Fig. 3.

The electrostatically driven actuators are the second
ubsystem of the DM model. Although they are modeled
mpirically in the open-loop control algorithm, it is useful
o first review approximate analytical models that de-
cribe their behavior. To a first order the actuators can be
odeled as a parallel-plate spring system (Fig. 4). The top

late represents the compliant actuator diaphragm,
hich is attached to a spring representing the restoring

orce associated with its elastic displacement. The bottom
late represents the actuator’s fixed electrode. In this
odel it is assumed that the plate representing the actua-

or diaphragm is infinitely rigid and that its stiffness is
onstant, similar to a linear spring.

With the application of a voltage between the actuator
iaphragm and its electrode, an electrostatic force FE is
mparted to the diaphragm causing it to deflect. Assuming
he lateral dimensions of the parallel plates representing
he actuator are much greater than their separation, FE
an be determined analytically to be

FE =
�0AV2

2�g0 − wp�2 , �4�

here �0 is the permitivity of free space, A is the plate
rea, V is the applied voltage, g0 is the initial plate sepa-
ation, and wp is the plate displacement [18]. Assuming
onstant stiffness kA, the actuator deflection creates a me-
hanical restoring force FA at the mirror post that is pro-
ortional to the displacement of the actuator wp:

FA = kAwp. �5�

To use this analytical model for the actuator subsystem
n an open-loop control algorithm, one could perform a
tatic equilibrium force balance at each actuator’s cen-
rally located post, with the simplifying assumption that
he electrostatic force acts at a point instead of being dis-
ributed across the actuator plate. Balancing the forces
or this model we find an analytical expression for actua-
or control voltages:

Vi =
2�g0 − wp,i�2�kAwp,i + FM,i�

�0A
, �6�

here the subscript i identifies a particular actuator. This
emonstrates the dependence of actuator control voltage
n its displacement and on forces coupled from the DM
acesheet.

Unfortunately, the parallel-plate electrostatic model
Eq. (4)] and linear-spring mechanical model [Eq. (5)] pro-

ig. 3. Estimating mirror forces FMi� from generalized surface-
ormal mirror load q�x ,y�.
ide relatively poor approximations of the actuator behav-
or. The actuator diaphragm is rigidly fixed along two op-
osing edges and not free as the model assumes. Such
ctuator diaphragm boundary conditions are referred to
s “fixed–fixed.” As a result the electrostatic model is lim-
ted by the fact that the electrodes are only parallel when
he actuator is in its initial unenergized position. There-
ore the electrostatic force distribution across the actuator
iaphragm changes with increased deflection from one
hat is initially uniform to one that is concentrated near
he diaphragm center. The mechanical model is also lim-
ted by stretching that effectively stiffens the actuator
ith increased deflection, i.e., kA is not constant.
Open-loop control is still tractable, however, because

he two forces FA and FE are local to the actuator, while
lobal coupling is completely described through the mir-
or force FM at each actuator post. Because of this, it is
ossible to reduce the open-loop control problem to one
hat is entirely local and uncoupled, provided that the
irror force FM is known at each actuator. As a result, the

lectrostatic actuator response to a local mirror force FM
an be modeled through a compact set of empirical mea-
urements with the functional relationship FM= f�wp ,V�,
hich is subject to the equilibrium condition:

FM = FA + FE. �7�

he open-loop control approach presented here is there-
ore based on using a calibration step to find a local, em-
irical measure of the actuator behavior linking values of
M, wp, and V, where wp now refers to the displacement of

he actuator post connection.

. OPEN-LOOP CONTROL
. Method
mpirical characterization of the DM actuators consists
f applying a variety of arbitrary shapes of known volt-
ges to the mirror surface. The mirror shape w�x ,y� is
hen measured using a surface mapping interferometer.
M is estimated by inserting w�x ,y� into Eq. (3) and inte-
rating the load q�x ,y� around each actuator post, as dis-
ussed above. Knowledge of the mirror shape w�x ,y� also
pecifies wp at each actuator post. A surface of the same
unctional form of Eq. (6) is fit to this data spanning
wp ,FM ,V� via a least-squares fit routine. Thus for an ar-
itrary desired mirror shape w�x ,y�, wp is known, FM is
alculated, and V�wp ,FM� is calculated using predeter-
ined surface coefficients.
The calibration table shown in Fig. 5 (right) was cre-

ted by applying identical voltages to a ring of actuators
left) to vary FM at the central actuator. wp�V� for the cen-
ral actuator was then measured using a Zygo New View

ig. 4. Simplified parallel-plate and linear-spring actuator
odel.
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000 optical profiler for several ring voltages (or FM’s). FM
as calculated at each actuator using Eq. (3). One-
undred data points for FM, wp, and V for a single actua-
or were recorded and used to predict the open-loop con-
rol voltages for the shapes presented below. The surface
t error for this calibration dataset was 4 V rms. Since
he architecture of this DM is such that all actuators are
ominally identical, it was assumed that calibration of
ne actuator will be sufficient to characterize all actua-
ors. Consequently, geometrical and material variations
cross the actuator array result in controller errors.
For the results presented here, mirror deflections are

eferenced from an unenergized mirror shape, i.e., differ-
ntial deflection. Unactuated peripheral surfaces of the
M are used to define a deflection reference plane,
�x ,y�=0, during calibration. Once a reference plane is

stablished, actuator displacement can be determined
olely by knowing mirror facesheet displacement.

The open-loop control software is based in Matlab and
erforms all hardware communication and data analysis.
he software controls an 8-bit high-voltage power supply
nd the Zygo NewView 6000 asynchronously to apply de-
ired shapes to the DM and to record the surface shapes.
he driver voltage resolution is �1.2 V, which corre-
ponds to less than 1 nm at low drive voltages and
12 nm at the maximum drive voltage. FM computation

s performed using the Matlab discrete differentiation
outines. The microscope magnification and CCD resolu-
ion used to view the full DM aperture determine the
umber of surface data points used in mirror calibration,
hich are approximately 300�300 pixels, corresponding

o a field of view of approximately 3�3 mm. This surface
ata is low-pass filtered with a cutoff spatial frequency
ust greater than the maximum frequency controllable by
he DM to reduce noise in the mirror load calculations.

. Results

. Evaluation of Open-Loop Control Algorithm
o demonstrate the open-loop DM control algorithm, we
egin by using a previously measured surface map of the

ig. 5. (Color online) (Left) Shape used to calibrate DM. Identi
ctuator. (Right) wp�V� for the central actuator is measured fo
wp ,FM ,V�. One-hundred data points from a single central actu
unctional form as Eq. (6). Surface fitting error was 4 V rms.
M as the desired mirror shape, w�x ,y�, which has a
ingle energized actuator deflected by �1 �m (Fig. 6).
ontrolling to a previously measured DM mirror shape
nsures that the desired control target shape is achiev-
ble. Figure 6 shows the desired mirror shape w�x ,y�
rom which mirror pressure q�x ,y� is determined via Eq.
3). From these two datasets, the mirror post displace-
ent wp and mirror forces FM at the posts are deter-
ined, allowing the prediction of the control voltage using

he calibration surface in Fig. 5. The predicted open-loop
oltage for the array corresponds closely with the voltage
sed to generate the reference shape and is within the
V fitting error of the calibration surface.
In a subsequent, more challenging control exercise, a

.5 �m amplitude stripe pattern was used for the desired
hape, as shown in Fig. 7. Again, this target shape was
btained by previously measuring the mirror surface
hen every other column of actuators was energized, pro-
ucing a shape that pushes the upper limit of the DM’s
chievable spatial frequencies. The residual shape error
fter open-loop control was 13.5 nm rms.
A third test of open-loop control performance was to

ompare it to that of closed-loop control for an ideal,
athematically defined target shape. To do this a closed-

oop control routine was employed that used measured
ygo interferometric surface map data as feedback. An

deal section of spherical surface with an approximately
00 mm radius of curvature (1.5 �m peak-to-valley across
he active DM aperture) was used as the reference shape
or both control routines. These results are shown in Fig.
. The residual error between the ideal shape and the
losed-loop controlled shape was 36.7 nm rms, and for the
pen-loop controlled shape was 41.0 nm rms.

. Evaluation of Actuator Mechanics
or the linear spring model discussed in Subsection 2.B,
A in Eq. (5) corresponds to the stiffness of the actuator
iaphragm, which is assumed to be constant. If the actua-
or diaphragm is modeled as a fixed–fixed beam under a
entral point load, its stiffness can be found analytically

tages are applied to a ring of actuators to vary FM at the central
rent ring voltages to produce the calibration dataset spanning
the 12�12 DM were collected and fit to a surface of the same
cal vol
r diffe
ator of
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sing 16EShA
3 /L3, where hA is the diaphragm thickness,

is its width and L is its length [19]. Plugging in dimen-
ions for the actuator used in these experiments, a con-
tant stiffness value of approximately 190 N/m is found
Fig. 9, dashed line).

However, in reality kA depends on both the distribution
f the loading force as well as the magnitude of its dis-
lacement due to stretching. If an actuator diaphragm is
oaded only by the mirror through adjacent actuator cou-
ling, but remains itself unenergized �FE=0�, the force
alance equation becomes FM=FA=kAwp [Eqs. (5) and
7)], from which kA can be determined from the V=0 slice
f the calibration surface in Fig. 5 (Fig. 9, squares). The
act that kA increases with wp suggests that the actuator
n fact experiences stretching as it is deflected. To corrobo-
ate this physical result, the empirically derived actuator
tiffness was compared to stiffness data measured using a
ysitron TriboIndenter, which applies a known point load
hile recording deflection. In this experiment the point

oad is applied to the actuator at the post location, with no
irror attached. kA corresponds to the slope of this curve.
he results of several measurements from a stand-alone
ctuator near the DM perimeter can be seen in Fig. 9
circles).

For a given actuator displacement, we see that the
easured actuator stiffness is very close to the empiri-

ig. 6. (Color online) Demonstration of DM open-loop control. Th
ctuator was less than the calibration surface fitting error, 4 V r

ig. 7. (Color online) (Left) Open-loop voltage prediction for a 1.
nd (right) residual errors between desired and predicted shapes
ally derived stiffness. This suggests that the mirror
orces estimated from the mirror facesheet analytical
odel (used in the empirical actuator calibration) are

elatively accurate. The dependence of actuator stiffness
n displacement is also evident in the TriboIndenter re-
ults. The discrepancy between the derived stiffness and
easured stiffness could be due to an overestimation of

M from the DM facesheet load q�x ,y�.

. DISCUSSION
he open-loop control method proved successful in allow-

ng accurate control of the DM surface in a single itera-
ion, based on a sparse calibration procedure and a com-
utationally efficient algorithm. Evaluation of the control
lgorithm for higher-order Zernike shapes, larger stroke
Ms, as well as devices with up to 1024 actuators is un-
er way. The behavior of devices with higher actuator
ounts is not expected to reduce control accuracy.

As mentioned above, the results presented here are for
ifferential mirror deflection measurements, i.e., when
he mirror displacement is referenced from its 0 V initial
hape. The control algorithm also assumes actuator uni-
ormity throughout the DM. In reality the initial DM sur-
ace is seldom perfectly flat at 0 V due to residual stress
n the mirror facesheet and polishing errors. Further-

rence between the actual and predicted voltages for the deflected

mplitude �185 V� stripe pattern. (Center) Predicted voltage map
111 nm peak-to-valley and 13.5 nm rms error.
e diffe
ms.
5 �m a
, with
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ore, tolerances in the manufacturing process lead to
arge nonuniformities in actuator mechanical properties
cross the array, which affects overall system accuracy.
hese nonuniformities may be the primary cause for the
esidual errors discussed in Subsection 3.B.1.

One method for addressing these nonuniformities is to
erform a more complete empirical calibration of the DM,
valuating more actuators across the array at more points
er actuator. Another solution is to incorporate these non-
niformities into the analytical model for the control al-
orithm, which is a topic currently being explored. For ex-

ig. 8. (Color online) (Left) Open-loop and closed-loop voltage m
nd (top right) residual errors between desired and achieved shap
oltage map and (bottom right) residual errors between desired

ig. 9. (Color online) Actuator mechanical stiffness under cen-
ral point load. The agreement between the empirically derived
ctuator stiffness (squares) and the TriboIndenter measured
tiffness (circles) suggests the analytical model used for describ-
ng plate deformation is accurate. Actuator stiffness is also com-
ared to a first-order analytical fixed-fixed beam approximation
dashed line), which does not account for actuator stretching
ehavior.
mple, knowledge of the initial stress in the mirror
acesheet could be incorporated into the calculations for
M.
The use of an empirical model for the description of ac-

uator mechanics is robust because it incorporates some
f these nonuniformities in the calibration procedure. For
xample, the constants of the biharmonic plate equation
3) can vary substantially, such as flexural rigidity, where
oung’s modulus and polysilicon layer thicknesses are un-
ertain to �5%. Furthermore, it allows continued use of
he algorithm even when actuator designs change, which
s not easy to accommodate in purely mathematical or
nalytical models.

. SUMMARY
n open-loop control algorithm for predicting the control
oltages of desired mirror shapes has been demonstrated.
hapes with deflection amplitudes of the order of 1.5 �m
nd at the limit of achievable DM spatial frequencies
ave been achieved with better than 15 nm rms accuracy.
he algorithm uses an analytical model to describe the

oading and deflection of the DM surface and an empirical
odel to describe the behavior of the electrostatic actua-

ors. The analytical model of the plate is used to obtain
he load necessary to create a desired mirror shape. The
mpirical model is constructed by applying a variety of ar-
itrary shapes of known voltages and computed mirror
orces at the posts. A least-square linear fit of the set
wp ,FM ,V� produces the empirical surface used for volt-
ge prediction. This method circumvents the shortcom-
ngs associated with using a parallel-plate actuator model
nd a linear-spring mechanical model.
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