Linking Time-reversal to Krylov Methods in Acoustic Focusing and Imaging

P.E. Barbone1,2, A.A. Oberai3, and G.R. Feijoo2

1Department of Mechanical Engineering
Boston University
2Applied Ocean Physics and Engineering
Woods Hole Oceanographic Institution
3IPRPI
Mechanical Aerospace and Nuclear Engineering
Rensselaer Polytechnic Institute

NUWC - Newport, 8 Jan 2009
Outline

1. Introduction: Time-reversal focusing
2. Lanczos Iterated Time-reversal focusing
 - Numerical tests
3. MUSIC Imaging via Lanczos Time-reversal
 - Numerical tests
Outline

1. Introduction: Time-reversal focusing
2. Lanczos Iterated Time-reversal focusing
 • Numerical tests
3. MUSIC Imaging via Lanczos Time-reversal
 • Numerical tests
Motivation

Time-reversal focusing & imaging

- NDE: Locating scatterers, flaws & voids (Johnson, et al. 2008(R))
- Medical applications: lithotripsy, HIFU radiation (Fink, et al. 2003(R))
- Underwater communication (1960’s; 1990’s - present)
- Decomposition of Time Reversal Operator (DORT) (Prada & Fink, 1990’s - present)
- TR Imaging (2000’s - present)
Motivation

Time-reversal focusing & imaging

- Underwater communication:
 - Parvulescu & Clay (1965 - matched-signal processing)
 - Dowling (phase conjugation) (early 1990’s).
 - TR Demonstration in ocean (Edelmann, et al. 2002)

- Decomposition of Time Reversal Operator (DORT):
 - Iterative focusing on isolated scatterer: Prada & Fink (1994)
 - Multiple scatterers (2004)
 - Demonstration of TRM in ocean waveguide (Gaumond et al. 2006, Prada et al. 2007)

- TR Imaging:
 - MULTiple SIgnal Classification - MUSIC (Devaney, mid 2000).
 - Extended to multiple scattering (Devany 2005).
 - TR = adjoint fields.
Motivation

Time-reversal focusing & imaging

- Drawbacks of iterative time-reversal:
 - Localization of multiple scatterers is tedious.
 - Poor convergence with scatterers of similar strengths.
 - Slow convergence limits application environments and frequency ranges.
 - Alternative: Measure entire multi-static response matrix, is worse.

- Goal: Efficiently identify & image multiple targets with few transmissions.
 - Quasi-stationary medium.
 - Large numbers of channels.
 - Signal strength issues when using small elements.
Motivation

Time-reversal focusing & imaging

- **Drawbacks of iterative time-reversal:**
 - Localization of multiple scatterers is tedious.
 - Poor convergence with scatterers of similar strengths.
 - Slow convergence limits application environments and frequency ranges.
 - Alternative: Measure entire multi-static response matrix, is worse.

- **Goal:** Efficiently identify & image multiple targets with few transmissions.
 - Quasi-stationary medium.
 - Large numbers of channels.
 - Signal strength issues when using small elements.
Iterated Time-Reversal

Transmit Pulse

TRANSDUCER
Iterated Time-Reversal

Received Pulse
Iterated Time-Reversal

Re-Transmit Time Reversed Pulse
Iterated Time-Reversal

TRANSDUCER

Receive Pulse
Iterated Time-Reversal

Re-Transmit Time Reversed Pulse
Iterated Time-Reversal
Iterated Time-Reversal

Re-Transmit Time Reversed Pulse
Iterated Time-Reversal

“Final” Received Pulse
Iterated Time-Reversal: Mathematics

Multistatic response matrix: G

$G_{ij} =$ measured signal on xdcr j due to unit excitation on xdcr i.

Properties:

1. $G_{ij} = G_{ji}$ symmetric due to reciprocity.
2. $G \neq G^\dagger$ Not Hermitian.
3. $G^* = G^\dagger$ Conjugate = Hermitian transpose.
Iterated Time-Reversal: Mathematics

A single time-reversal iteration

1. Transmit $v^{(0)}(x, t)$
2. Receive $v^{(1/2)}(x, t) = G[v^{(0)}(x, t)]$
3. Transmit $v^{(1/2)}(x, T - t)$
4. Receive $v^{(1)}(x, t) = G[v^{(1/2)}(x, T - t)]$

Can write as $v^{(1)}(x, t) = H[v^{(0)}(x, t)]$, here $H = G^T G$ is the time-reversal operator

Time reversal iterations: $v^{(n)} = \overbrace{H \cdot H \cdots H}^{n}[v^{(0)}]$

As n increases $v^{(n)}$ selectively focuses on the strongest scatterer. Why?
Iterated Time-Reversal: Mathematics

A single time-reversal iteration

1. Transmit $v^{(0)}(x, t)$
2. Receive $v^{(1/2)}(x, t) = G[v^{(0)}(x, t)]$
3. Transmit $v^{(1/2)}(x, T - t)$
4. Receive $v^{(1)}(x, t) = G[v^{(1/2)}(x, T - t)]$

Can write as $v^{(1)}(x, t) = H[v^{(0)}(x, t)]$, here $H = G^T G$ is the time-reversal operator

Time reversal iterations: $v^{(n)} = \overbrace{H \cdot H \cdots H}^{n} [v^{(0)}]$

As n increases $v^{(n)}$ selectively focuses on the strongest scatterer. Why?
Iterated Time-Reversal: Mathematics

A single time-reversal iteration

1. Transmit $v^{(0)}(x, t)$
2. Receive $v^{(1/2)}(x, t) = G[v^{(0)}(x, t)]$
3. Transmit $v^{(1/2)}(x, T - t)$
4. Receive $v^{(1)}(x, t) = G[v^{(1/2)}(x, T - t)]$

Can write as $v^{(1)}(x, t) = H[v^{(0)}(x, t)]$, here $H = G^T G$ is the time-reversal operator.

Time reversal iterations: $v^{(n)} = H \cdot H \cdots H [v^{(0)}]$.

As n increases, $v^{(n)}$ selectively focuses on the strongest scatterer. Why?
Iterated Time-Reversal: Mathematics

A single time-reversal iteration

1. Transmit $v^{(0)}(x, t)$
2. Receive $v^{(1/2)}(x, t) = G[v^{(0)}(x, t)]$
3. Transmit $v^{(1/2)}(x, T - t)$
4. Receive $v^{(1)}(x, t) = G[v^{(1/2)}(x, T - t)]$

Can write as $v^{(1)}(x, t) = H[v^{(0)}(x, t)]$, here $H = G^T G$ is the time-reversal operator

Time reversal iterations: $v^{(n)} = \underbrace{H \cdot H \cdots H}_{n}[v^{(0)}]$

As n increases $v^{(n)}$ selectively focuses on the strongest scatterer. Why?
Iterated Time-Reversal: Mathematics

A single time-reversal iteration

1. Transmit $v^{(0)}(x, t)$
2. Receive $v^{(1/2)}(x, t) = G[v^{(0)}(x, t)]$
3. Transmit $v^{(1/2)}(x, T - t)$
4. Receive $v^{(1)}(x, t) = G[v^{(1/2)}(x, T - t)]$

Can write as $v^{(1)}(x, t) = H[v^{(0)}(x, t)]$, here $H = G^T G$ is the time-reversal operator

Time reversal iterations: $v^{(n)} = \underbrace{H \cdot H \cdots H}_{n} [v^{(0)}]$

As n increases $v^{(n)}$ selectively focuses on the strongest scatterer. Why?
Iterated Time-Reversal: Mathematics

A single time-reversal iteration

1. Transmit \(v^{(0)}(x, t) \)
2. Receive \(v^{(1/2)}(x, t) = G[v^{(0)}(x, t)] \)
3. Transmit \(v^{(1/2)}(x, T - t) \)
4. Receive \(v^{(1)}(x, t) = G[v^{(1/2)}(x, T - t)] \)

Can write as \(v^{(1)}(x, t) = H[v^{(0)}(x, t)] \), here \(H = G^T G \) is the time-reversal operator.

Time reversal iterations: \(v^{(n)} = \underbrace{H \cdot H \cdots H}_{n}[v^{(0)}] \)

As \(n \) increases \(v^{(n)} \) selectively focuses on the strongest scatterer. Why?

Paul Barbone (BU)
Iterated Time-Reversal: Mathematics

A single time-reversal iteration

1. Transmit $v^{(0)}(x, t)$
2. Receive $v^{(1/2)}(x, t) = G[v^{(0)}(x, t)]$
3. Transmit $v^{(1/2)}(x, T - t)$
4. Receive $v^{(1)}(x, t) = G[v^{(1/2)}(x, T - t)]$

Can write as $v^{(1)}(x, t) = H[v^{(0)}(x, t)]$, here $H = G^T G$ is the time-reversal operator

Time reversal iterations: $v^{(n)} = \underbrace{H \cdot H \cdots H}_{n}[v^{(0)}]$

As n increases, $v^{(n)}$ selectively focuses on the strongest scatterer. Why?
Iterated Time-Reversal: Mathematics

A single time-reversal iteration

1. Transmit \(v^{(0)}(x, t) \)
2. Receive \(v^{(1/2)}(x, t) = G[v^{(0)}(x, t)] \)
3. Transmit \(v^{(1/2)}(x, T - t) \)
4. Receive \(v^{(1)}(x, t) = G[v^{(1/2)}(x, T - t)] \)

Can write as \(v^{(1)}(x, t) = H[v^{(0)}(x, t)] \), here \(H = G^T G \) is the time-reversal operator.

Time reversal iterations: \(v^{(n)} = \underbrace{H \cdot H \cdot \cdots H}_{n \text{ times}} [v^{(0)}] \)

As \(n \) increases \(v^{(n)} \) selectively focuses on the strongest scatterer. Why?
Iterated Time-Reversal: Mathematics

Why?

1. $v^{(n)} = H^n[v^{(0)}]$ are power iterations. As n increases, $v^n \approx \phi^{(1)}$, eigenvector of the largest eigenvalue of H.

2. Let $\{s^{(i)}, \phi^{(i)}(x, t)\}$ be the ith eigenpair for G; then eigenpairs for H are $\{\lambda^{(i)}, \phi^{(i)}(x, t)\}$, where $\lambda^{(i)} = |s^{(i)}|^2$.

3. $\phi^{(1)}$ focuses on strongest scatterer.

Criticism of Power iterations:

1. Tedious for multiple eigenvalues
2. Poor convergence for similar eigenvalues
3. Non-optimal convergence in general
Iterated Time-Reversal: Mathematics

Why?

1. \(v^{(n)} = H^n[v^{(0)}] \) are power iterations. As \(n \) increases \(v^n \approx \phi^{(1)} \), eigenvector of the largest eigenvalue of \(H \)

2. Let \(\{s^{(i)}, \phi^{(i)}(x, t)\} \) be the \(i \)th eigenpair for \(G \); then eigenpairs for \(H \) are \(\{\lambda^{(i)}, \phi^{(i)}(x, t)\} \), where \(\lambda^{(i)} = |s^{(i)}|^2 \)

3. \(\phi^{(1)} \) focuses on strongest scatterer.

Criticism of Power iterations:

1. Tedious for multiple eigenvalues
2. Poor convergence for similar eigenvalues
3. Non-optimal convergence in general
Iterated Time-Reversal: Mathematics

Why?

1. \(\nu^{(n)} = H^n[\nu^{(0)}] \) are power iterations. As \(n \) increases \(\nu^n \approx \phi^{(1)} \), eigenvector of the largest eigenvalue of \(H \)

2. Let \(\{ s^{(i)}, \phi^{(i)}(x, t) \} \) be the \(i \)th eigenpair for \(G \); then eigenpairs for \(H \) are \(\{ \lambda^{(i)}, \phi^{(i)}(x, t) \} \), where \(\lambda^{(i)} = |s^{(i)}|^2 \)

3. \(\phi^{(1)} \) focuses on strongest scatterer.

Criticism of Power iterations:

1. Tedious for multiple eigenvalues
2. Poor convergence for similar eigenvalues
3. Non-optimal convergence in general
Iterated Time-Reversal: Mathematics

Why?

1. $v^{(n)} = H^n[v^{(0)}]$ are power iterations. As n increases $v^n \approx \phi^{(1)}$, eigenvector of the largest eigenvalue of H

2. Let $\{s^{(i)}, \phi^{(i)}(x, t)\}$ be the ith eigenpair for G; then eigenpairs for H are $\{\lambda^{(i)}, \phi^{(i)}(x, t)\}$, where $\lambda^{(i)} = |s^{(i)}|^2$

3. $\phi^{(1)}$ focuses on strongest scatterer.

Criticism of Power iterations:

1. Tedious for multiple eigenvalues
2. Poor convergence for similar eigenvalues
3. Non-optimal convergence in general
Iterated Time-Reversal: Mathematics

Why?

1. $v^{(n)} = H^n[v^{(0)}]$ are power iterations. As n increases $v^n \approx \phi^{(1)}$, eigenvector of the largest eigenvalue of H

2. Let $\{s^{(i)}, \phi^{(i)}(x, t)\}$ be the ith eigenpair for G; then eigenpairs for H are $\{\lambda^{(i)}, \phi^{(i)}(x, t)\}$, where $\lambda^{(i)} = |s^{(i)}|^2$

3. $\phi^{(1)}$ focuses on strongest scatterer.

Criticism of Power iterations:

1. Tedious for multiple eigenvalues
2. Poor convergence for similar eigenvalues
3. Non-optimal convergence in general
Iterated Time-Reversal: Mathematics

Why?

1. $v^{(n)} = H^n[v^{(0)}]$ are power iterations. As n increases $v^n \approx \phi^{(1)}$, eigenvector of the largest eigenvalue of H

2. Let $\{s^{(i)}, \phi^{(i)}(x, t)\}$ be the ith eigenpair for G; then eigenpairs for H are $\{\lambda^{(i)}, \phi^{(i)}(x, t)\}$, where $\lambda^{(i)} = |s^{(i)}|^2$

3. $\phi^{(1)}$ focuses on strongest scatterer.

Criticism of Power iterations:

1. Tedious for multiple eigenvalues

2. Poor convergence for similar eigenvalues

3. Non-optimal convergence in general
Iterated Time-Reversal: Mathematics

Why?

1. $v^{(n)} = H^n[v^{(0)}]$ are power iterations. As n increases $v^n \approx \phi^{(1)}$, eigenvector of the largest eigenvalue of H

2. Let $\{s^{(i)}, \phi^{(i)}(x, t)\}$ be the ith eigenpair for G; then eigenpairs for H are $\{\lambda^{(i)}, \phi^{(i)}(x, t)\}$, where $\lambda^{(i)} = |s^{(i)}|^2$

3. $\phi^{(1)}$ focuses on strongest scatterer.

Criticism of Power iterations:

1. Tedious for multiple eigenvalues

2. Poor convergence for similar eigenvalues

3. Non-optimal convergence in general
Iterated Time-Reversal: Mathematics

Why?

1. $v^{(n)} = H^n[v^{(0)}]$ are power iterations. As n increases $v^n \approx \phi^{(1)}$, eigenvector of the largest eigenvalue of H

2. Let $\{s^{(i)}(x, t), \phi^{(i)}(x, t)\}$ be the ith eigenpair for G; then eigenpairs for H are $\{\lambda^{(i)}, \phi^{(i)}(x, t)\}$, where $\lambda^{(i)} = |s^{(i)}|^2$

3. $\phi^{(1)}$ focuses on strongest scatterer.

Criticism of Power iterations:

1. Tedious for multiple eigenvalues
2. Poor convergence for similar eigenvalues
3. Non-optimal convergence in general
Outline

1. Introduction: Time-reversal focusing

2. Lanczos Iterated Time-reversal focusing
 - Numerical tests

3. MUSIC Imaging via Lanczos Time-reversal
 - Numerical tests
Time-reversal using Lanczos iterations

Can we do better? Yes, Lanczos iterations

Let $K^{n+1}(H, \nu^{(0)}) = \{ \nu^{(0)}, H\nu^{(0)}, \ldots, H^n\nu^{(0)} \}$ be the Krylov subspace

- For Power iterations $\lambda^{(1)}$ is approximated by the Rayleigh quotient of $H^n\nu^{(0)}$
- For Lanczos iterations $\lambda^{(1)}$ is approximated by the maximum of the Rayleigh quotient of all vectors in $K^{n+1}(H, \nu^{(0)})$
- That is, Lanczos is always better than power iterations.
Can we do better? Yes, Lanczos iterations

Let $\mathcal{K}^{n+1}(H, v^{(0)}) = \{ v^{(0)}, Hv^{(0)}, \ldots, H^n v^{(0)} \}$ be the Krylov subspace

- For Power iterations $\lambda^{(1)}$ is approximated by the Rayleigh quotient of $H^n v^{(0)}$
- For Lanczos iterations $\lambda^{(1)}$ is approximated by the maximum of the Rayleigh quotient of all vectors in $\mathcal{K}^{n+1}(H, v^{(0)})$
- That is, Lanczos is always better than power iterations.
Time-reversal using Lanczos iterations

Can we do better? Yes, Lanczos iterations

Let $\mathcal{K}^{n+1}(H, v^{(0)}) = \{v^{(0)}, Hv^{(0)}, \ldots, H^n v^{(0)}\}$ be the Krylov subspace

- For Power iterations $\lambda^{(1)}$ is approximated by the Rayleigh quotient of $H^n v^{(0)}$

- For Lanczos iterations $\lambda^{(1)}$ is approximated by the maximum of the Rayleigh quotient of all vectors in $\mathcal{K}^{n+1}(H, v^{(0)})$

- That is, Lanczos is always better than power iterations.
Time-reversal using Lanczos iterations

Can we do better? Yes, Lanczos iterations

Let $\mathcal{K}^{n+1}(H, v^{(0)}) = \{ v^{(0)}, Hv^{(0)}, \ldots, H^n v^{(0)} \}$ be the Krylov subspace

- For Power iterations $\lambda^{(1)}$ is approximated by the Rayleigh quotient of $H^n v^{(0)}$

- For Lanczos iterations $\lambda^{(1)}$ is approximated by the maximum of the Rayleigh quotient of all vectors in $\mathcal{K}^{n+1}(H, v^{(0)})$

That is, Lanczos is always better than power iterations.
Can we do better? Yes, Lanczos iterations

Let $\mathcal{K}^{n+1}(H, v^{(0)}) = \{ v^{(0)}, Hv^{(0)}, \ldots, H^n v^{(0)} \}$ be the Krylov subspace

- For Power iterations $\lambda^{(1)}$ is approximated by the Rayleigh quotient of $H^n v^{(0)}$
- For Lanczos iterations $\lambda^{(1)}$ is approximated by the maximum of the Rayleigh quotient of all vectors in $\mathcal{K}^{n+1}(H, v^{(0)})$
- That is, Lanczos is always better than power iterations.
Time-reversal using Lanczos iterations

1. Begin with arbitrary signal $v^{(1)}$ such that $(v^{(1)}, v^{(1)}) = 1$
2. Let $w^{(1)} = H[v^{(1)}]$. (standard time-reversal operation.)
3. Iterate:
 1. $\alpha_1 = (w^{(1)}, v^{(1)})$
 2. $w^{(1)} = w^{(1)} - \alpha_1 v^{(1)}$ (orthogonalize)
 3. $\beta_2 = \sqrt{(w^{(1)}, w^{(1)})}$
 4. $v^{(2)} = w^{(1)}/\beta_2$ (normalize)
 5. $w^{(2)} = H[v^{(2)}] - \beta_2 v^{(1)}$

After n iterations:
- Vectors $v^{(j)}$ represent orthonormal basis for $\mathcal{K}^n(H, v^{(1)})$.
- Create $n \times n$ matrix $T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i)$
- Let $\{\omega^{(i)}, \psi^{(i)}\}$ be the ith eigenpair for T
- then $\lambda^{(i)} \approx \omega^{(i)}$ and $\phi^{(i)} \approx \sum_{j=1}^{n} \psi^{(i)}_{j} v^{(j)}$
Time-reversal using Lanczos iterations

1. Begin with arbitrary signal \(v^{(1)} \) such that \((v^{(1)}, v^{(1)}) = 1 \)
2. Let \(w^{(1)} = H[v^{(1)}] \). (standard time-reversal operation.)
3. Iterate:
 1. \(\alpha_1 = (w^{(1)}, v^{(1)}) \)
 2. \(w^{(1)} = w^{(1)} - \alpha_1 v^{(1)} \) (orthogonalize)
 3. \(\beta_2 = \sqrt{(w^{(1)}, w^{(1)})} \)
 4. \(v^{(2)} = w^{(1)}/\beta_2 \) (normalize)
 5. \(w^{(2)} = H[v^{(2)}] - \beta_2 v^{(1)} \)

After \(n \) iterations:
- Vectors \(v^{(j)} \) represent orthonormal basis for \(\mathcal{K}^n(H, v^{(1)}) \).
- Create \(n \times n \) matrix \(T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i) \)
- Let \(\{\omega(i), \psi(i)\} \) be the \(i \)th eigenpair for \(T \ldots . . \)
- \(\ldots . . \) then \(\lambda(i) \approx \omega(i) \) and \(\phi(i) \approx \sum_{j=1}^n \psi_j(i) v^{(j)} \)
Time-reversal using Lanczos iterations

1. Begin with arbitrary signal $v^{(1)}$ such that $(v^{(1)}, v^{(1)}) = 1$
2. Let $w^{(1)} = H[v^{(1)}]$. (standard time-reversal operation.)
3. Iterate:
 1. $\alpha_1 = (w^{(1)}, v^{(1)})$
 2. $w^{(1)} = w^{(1)} - \alpha_1 v^{(1)}$ (orthogonalize)
 3. $\beta_2 = \sqrt{(w^{(1)}, w^{(1)})}$
 4. $v^{(2)} = w^{(1)}/\beta_2$ (normalize)
 5. $w^{(2)} = H[v^{(2)}] - \beta_2 v^{(1)}$

After n iterations:

- Vectors $v^{(j)}$ represent orthonormal basis for $\mathcal{K}^n(H, v^{(1)})$.
- Create $n \times n$ matrix $T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i)$
- Let $\{\omega(i), \psi(i)\}$ be the ith eigenpair for T
- then $\lambda(i) \approx \omega(i)$ and $\phi(i) \approx \sum_{j=1}^n \psi_j(i) v^{(j)}$
Time-reversal using Lanczos iterations

1. Begin with arbitrary signal $\nu^{(1)}$ such that $(\nu^{(1)}, \nu^{(1)}) = 1$
2. Let $w^{(1)} = H[\nu^{(1)}]$. (standard time-reversal operation.)
3. Iterate:
 1. $\alpha_1 = (w^{(1)}, \nu^{(1)})$
 2. $w^{(1)} = w^{(1)} - \alpha_1 \nu^{(1)}$ (orthogonalize)
 3. $\beta_2 = \sqrt{(w^{(1)}, w^{(1)})}$
 4. $\nu^{(2)} = w^{(1)}/\beta_2$ (normalize)
 5. $w^{(2)} = H[\nu^{(2)}] - \beta_2 \nu^{(1)}$

After n iterations:
- Vectors $\nu^{(j)}$ represent orthonormal basis for $\mathcal{K}^n(H, \nu^{(1)})$.
- Create $n \times n$ matrix $T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i)$
- Let $\{\omega^{(i)}, \psi^{(i)}\}$ be the ith eigenpair for T
- then $\lambda^{(i)} \approx \omega^{(i)}$ and $\phi^{(i)} \approx \sum_{j=1}^n \psi^{(i)}_j \nu^{(j)}$
Time-reversal using Lanczos iterations

1. Begin with arbitrary signal $v^{(1)}$ such that $(v^{(1)}, v^{(1)}) = 1$
2. Let $w^{(1)} = H[v^{(1)}]$. (standard time-reversal operation.)
3. Iterate:
 1. $\alpha_1 = (w^{(1)}, v^{(1)})$
 2. $w^{(1)} = w^{(1)} - \alpha_1 v^{(1)}$ (orthogonalize)
 3. $\beta_2 = \sqrt{(w^{(1)}, w^{(1)})}$
 4. $v^{(2)} = w^{(1)}/\beta_2$ (normalize)
 5. $w^{(2)} = H[v^{(2)}] - \beta_2 v^{(1)}$

After n iterations:
- Vectors $v^{(j)}$ represent orthonormal basis for $\mathcal{K}^n(H, v^{(1)})$.
- Create $n \times n$ matrix $T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i)$
- Let $\{\omega(i), \psi(i)\}$ be the ith eigenpair for T
- then $\lambda(i) \approx \omega(i)$ and $\phi(i) \approx \sum_{j=1}^n \psi_j^{(i)} v^{(j)}$
Time-reversal using Lanczos iterations

1. Begin with arbitrary signal \(\nu^{(1)} \) such that \((\nu^{(1)}, \nu^{(1)}) = 1 \)
2. Let \(w^{(1)} = H[\nu^{(1)}] \). (standard time-reversal operation.)
3. Iterate:

 \begin{align*}
 1. & \quad \alpha_1 = (w^{(1)}, \nu^{(1)}) \\
 2. & \quad w^{(1)} = w^{(1)} - \alpha_1 \nu^{(1)} \quad \text{(orthogonalize)} \\
 3. & \quad \beta_2 = \sqrt{(w^{(1)}, w^{(1)})} \\
 4. & \quad \nu^{(2)} = w^{(1)}/\beta_2 \quad \text{(normalize)} \\
 5. & \quad w^{(2)} = H[\nu^{(2)}] - \beta_2 \nu^{(1)}
 \end{align*}

After \(n \) iterations:

- Vectors \(\nu^{(j)} \) represent orthonormal basis for \(\mathcal{K}^n(H, \nu^{(1)}) \).
- Create \(n \times n \) matrix \(T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i) \)
- Let \(\{\omega^{(i)}, \psi^{(i)}\} \) be the \(i \)th eigenpair for \(T \)
- then \(\lambda^{(i)} \approx \omega^{(i)} \) and \(\phi^{(i)} \approx \sum_{j=1}^{n} \psi^{(i)}_j \nu^{(j)} \)
Time-reversal using Lanczos iterations

1. Begin with arbitrary signal $v^{(1)}$ such that $(v^{(1)}, v^{(1)}) = 1$
2. Let $w^{(1)} = H[v^{(1)}]$. (standard time-reversal operation.)
3. Iterate:
 1. $\alpha_1 = (w^{(1)}, v^{(1)})$
 2. $w^{(1)} = w^{(1)} - \alpha_1 v^{(1)}$ (orthogonalize)
 3. $\beta_2 = \sqrt{(w^{(1)}, w^{(1)})}$
 4. $v^{(2)} = w^{(1)}/\beta_2$ (normalize)
 5. $w^{(2)} = H[v^{(2)}] - \beta_2 v^{(1)}$

After n iterations:

- Vectors $v^{(j)}$ represent orthonormal basis for $\mathcal{K}^n(H, v^{(1)})$.
- Create $n \times n$ matrix $T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i)$
- Let $\{\omega(i), \psi(i)\}$ be the ith eigenpair for T
- then $\lambda(i) \approx \omega(i)$ and $\phi(i) \approx \sum_{j=1}^{n} \psi_j(i) v^{(j)}$
Lanczos Iterated Time-reversal focusing

Time-reversal using Lanczos iterations

1. Begin with arbitrary signal $v^{(1)}$ such that $(v^{(1)}, v^{(1)}) = 1$
2. Let $w^{(1)} = H[v^{(1)}]$. (standard time-reversal operation.)
3. Iterate:
 1. $\alpha_1 = (w^{(1)}, v^{(1)})$
 2. $w^{(1)} = w^{(1)} - \alpha_1 v^{(1)}$ (orthogonalize)
 3. $\beta_2 = \sqrt{(w^{(1)}, w^{(1)})}$
 4. $v^{(2)} = w^{(1)}/\beta_2$ (normalize)
 5. $w^{(2)} = H[v^{(2)}] - \beta_2 v^{(1)}$

After n iterations:
- Vectors $v^{(j)}$ represent orthonormal basis for $\mathcal{K}_n(H, v^{(1)})$.
- Create $n \times n$ matrix $T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i)$
- Let $\{\omega(i), \psi(i)\}$ be the ith eigenpair for T
-then $\lambda(i) \approx \omega(i)$ and $\phi(i) \approx \sum_{j=1}^n \psi_j(i) v^{(j)}$
Time-reversal using Lanczos iterations

1. Begin with arbitrary signal $v^{(1)}$ such that $(v^{(1)}, v^{(1)}) = 1$
2. Let $w^{(1)} = H[v^{(1)}]$. (standard time-reversal operation.)
3. Iterate:
 1. $\alpha_1 = (w^{(1)}, v^{(1)})$
 2. $w^{(1)} = w^{(1)} - \alpha_1 v^{(1)}$ (orthogonalize)
 3. $\beta_2 = \sqrt{(w^{(1)}, w^{(1)})}$
 4. $v^{(2)} = w^{(1)}/\beta_2$ (normalize)
 5. $w^{(2)} = H[v^{(2)}] - \beta_2 v^{(1)}$

After n iterations:
- Vectors $v^{(j)}$ represent orthonormal basis for $\mathcal{K}^n(H, v^{(1)})$.
- Create $n \times n$ matrix $T = \text{tridiag}(\alpha_i, \beta_i, \alpha_i)$
- Let $\{\omega^{(i)}, \psi^{(i)}\}$ be the ith eigenpair for T
- then $\lambda^{(i)} \approx \omega^{(i)}$ and $\phi^{(i)} \approx \sum_{j=1}^{n} \psi^{(i)}_j v^{(j)}$
Iterated Lanczos Time-Reversal

Transmit Pulse
Iterated Lanczos Time-Reversal
Iterated Lanczos Time-Reversal

Re-Transmit Time Reversed Pulse
Iterated Lanczos Time-Reversal

TRANSDUCER

Receive Pulse

Paul Barbone (BU)
Iterated Lanczos Time-Reversal

Transmit Orthogonalized Pulse
Iterated Lanczos Time-Reversal
Time-reversal using Lanczos iterations

Changes to (Power-iterations based) time-reversal experiment

1. Number of time reversal operations remain the same
2. Each time reversal step followed by $\approx 10N$ flops ($N = N_s \times N_t$)
3. Keep 3 vectors of length N in memory
4. Store n Lanczos vectors on hard drive
5. $O(Nn)$ flops to evaluate $\{\lambda^{(i)}, \phi^{(i)}\}$
Changes to (Power-iterations based) time-reversal experiment

1. Number of time reversal operations remain the same
2. Each time reversal step followed by $\approx 10N$ flops ($N = N_s \times N_t$)
3. Keep 3 vectors of length N in memory
4. Store n Lanczos vectors on hard drive
5. $O(Nn)$ flops to evaluate $\{\lambda^{(i)}, \phi^{(i)}\}$
Time-reversal using Lanczos iterations

Changes to (Power-iterations based) time-reversal experiment

1. Number of time reversal operations remain the same
2. Each time reversal step followed by \(\approx 10N \) flops \((N = N_s \times N_t)\)
3. Keep 3 vectors of length \(N\) in memory
4. Store \(n\) Lanczos vectors on hard drive
5. \(O(Nn)\) flops to evaluate \(\{\lambda^{(i)}, \phi^{(i)}\}\)
Time-reversal using Lanczos iterations

Changes to (Power-iterations based) time-reversal experiment

1. Number of time reversal operations remain the same
2. Each time reversal step followed by \(\approx 10N \) flops \((N = N_s \times N_t)\)
3. Keep 3 vectors of length \(N \) in memory
4. Store \(n \) Lanczos vectors on hard drive
5. \(O(Nn) \) flops to evaluate \(\{\lambda^{(i)}, \phi^{(i)}\} \)
Time-reversal using Lanczos iterations

Changes to (Power-iterations based) time-reversal experiment

1. Number of time reversal operations remain the same
2. Each time reversal step followed by $\approx 10N$ flops ($N = N_s \times N_t$)
3. Keep 3 vectors of length N in memory
4. Store n Lanczos vectors on hard drive
5. $O(Nn)$ flops to evaluate $\{\lambda^{(i)}, \phi^{(i)}\}$
Time-reversal using Lanczos iterations

Changes to (Power-iterations based) time-reversal experiment

1. Number of time reversal operations remain the same
2. Each time reversal step followed by $\approx 10N$ flops ($N = N_s \times N_t$)
3. Keep 3 vectors of length N in memory
4. Store n Lanczos vectors on hard drive
5. $O(Nn)$ flops to evaluate $\{\lambda^{(i)}, \phi^{(i)}\}$
Numerical Tests

Preliminaries

1. Domain Ω with inhomogeneities (scatterers)
2. Surface Γ embedded with transmitters/receivers
3. Transmitted or received signal is a function of $x \in \Gamma$ and $t \in (0, T)$
4. G is the **scattering operator**; s is transmitted signal; $r = G[s]$ is received signal
5. Sometimes convenient to discretize space x or time t or both
Numerical Test 1

- Time-harmonic case
- Transmitters & receivers at $x = D$
- $D \gg \delta$
- Neglect multiple scattering
- Ideally separated
Numerical Test 1

For the scattering operator G:

- Eigenvalues, $s^{(i)}$, proportional to scatterer strength
- Eigenvectors given by

$$
\phi^{(i)}(y, z) = g^{(i)}(D, y, z) / \|g^{(i)}(D, y, z)\|
$$

where

$$
g^{(i)}(x) = \frac{e^{ik|x-x_i|}}{4\pi|x-x_i|}.
$$

For the time reversal operator H:

- Eigenvalues, $\lambda^{(i)} = |s^{(i)}|^2$
- Eigenvectors equal to $\phi^{(i)}(y, z)$
Numerical Test 1

For the scattering operator G:

- Eigenvalues, $s^{(i)}$, proportional to scatterer strength
- Eigenvectors given by

$$\phi^{(i)}(y, z) = g^{(i)}(D, y, z)/\|g^{(i)}(D, y, z)\|$$

where

$$g^{(i)}(x) = \frac{e^{ik|x-x_i|}}{4\pi|x - x_i|}.$$

For the time reversal operator H:

- Eigenvalues, $\lambda^{(i)} = |s^{(i)}|^2$
- Eigenvectors equal to $\phi^{(i)}(y, z)$
Numerical Test 1

Case A: Two scatterers ($N = 2$)

- For Power iterations, error in the first eigenvector $\epsilon_1 \propto \left| \frac{s^{(2)}}{s^{(1)}} \right|^{2n}$
 - For different strengths, $s^{(2)} = 0.70s^{(1)}$, $\epsilon_1 = 0.08\%$ after 10 iterations
 - For similar strengths, $s^{(2)} = 0.98s^{(1)}$, $\epsilon_1 = 66\%$ after 10 iterations

- Lanczos iterations converge to the correct answer in two iterations
Case A: Two scatterers \((N = 2)\)

- For Power iterations, error in the first eigenvector \(\epsilon_1 \propto \left| \frac{s^{(2)}}{s^{(1)}} \right|^{2n}\)
 - For different strengths, \(s^{(2)} = 0.70s^{(1)}\), \(\epsilon_1 = 0.08\%\) after 10 iterations
 - For similar strengths, \(s^{(2)} = 0.98s^{(1)}\), \(\epsilon_1 = 66\%\) after 10 iterations
- Lanczos iterations converge to the correct answer in two iterations
Numerical Test 1

Case A: Two scatterers \((N = 2)\)

- For Power iterations, error in the first eigenvector \(\epsilon_1 \propto \left| \frac{s^{(2)}}{s^{(1)}} \right|^{2n}\)
 - For different strengths, \(s^{(2)} = 0.70s^{(1)}\), \(\epsilon_1 = 0.08\%\) after 10 iterations
 - For similar strengths, \(s^{(2)} = 0.98s^{(1)}\), \(\epsilon_1 = 66\%\) after 10 iterations
- Lanczos iterations converge to the correct answer in two iterations
Numerical Test 1

Case A: Two scatterers \((N = 2)\)

- For Power iterations, error in the first eigenvector \(\epsilon_1 \propto |\frac{s^{(2)}}{s^{(1)}}|^{2n}\)
 - For different strengths, \(s^{(2)} = 0.70s^{(1)}\), \(\epsilon_1 = 0.08\%\) after 10 iterations
 - For similar strengths, \(s^{(2)} = 0.98s^{(1)}\), \(\epsilon_1 = 66\%\) after 10 iterations
- Lanczos iterations converge to the correct answer in two iterations
Numerical Test 1

Case A: Two scatterers ($N = 2$)

- For Power iterations, error in the first eigenvector $\epsilon_1 \propto \left| \frac{s^{(2)}}{s^{(1)}} \right|^{2n}$
 - For different strengths, $s^{(2)} = 0.70s^{(1)}$, $\epsilon_1 = 0.08\%$ after 10 iterations
 - For similar strengths, $s^{(2)} = 0.98s^{(1)}$, $\epsilon_1 = 66\%$ after 10 iterations
- Lanczos iterations converge to the correct answer in two iterations
Numerical Test 1

Case B: Multiple scatterers ($N = 200$)

- Scattering strength selected randomly between 0 and 1
- Initial transmitted signal: point source
- Power iterations: 10 iterations to determine $\phi^{(1)}$ and then 10 to determine $\phi^{(2)}$
- Lanczos iterations: 20 iterations
- 10,000 realizations to quantify performance
- For each realization compute error in the 1st and 2nd eigenfunction
- Plot histogram of error
Numerical Test 1

Case B: Multiple scatterers \((N = 200)\)

- Scattering strength selected randomly between 0 and 1
- Initial transmitted signal: point source
- Power iterations: 10 iterations to determine \(\phi^{(1)}\) and then 10 to determine \(\phi^{(2)}\)
- Lanczos iterations: 20 iterations
- 10,000 realizations to quantify performance
- For each realization compute error in the 1st and 2nd eigenfunction
- Plot histogram of error
Numerical Test 1

Case B: Multiple scatterers ($N = 200$)

- Scattering strength selected randomly between 0 and 1
- Initial transmitted signal: point source
- Power iterations: 10 iterations to determine $\phi^{(1)}$ and then 10 to determine $\phi^{(2)}$
- Lanczos iterations: 20 iterations
- 10,000 realizations to quantify performance
- For each realization compute error in the 1st and 2nd eigenfunction
- Plot histogram of error
Numerical Test 1

Case B: Multiple scatterers ($N = 200$)

- Scattering strength selected randomly between 0 and 1
- Initial transmitted signal: point source
- Power iterations: 10 iterations to determine $\phi^{(1)}$ and then 10 to determine $\phi^{(2)}$
- Lanczos iterations: 20 iterations
- 10,000 realizations to quantify performance
- For each realization compute error in the 1st and 2nd eigenfunction
- Plot histogram of error
Numerical Test 1

Case B: Multiple scatterers \((N = 200)\)

- Scattering strength selected randomly between 0 and 1
- Initial transmitted signal: point source
- Power iterations: 10 iterations to determine \(\phi^{(1)}\) and then 10 to determine \(\phi^{(2)}\)
- Lanczos iterations: 20 iterations
 - 10,000 realizations to quantify performance
 - For each realization compute error in the 1st and 2nd eigenfunction
 - Plot histogram of error
Numerical Test 1

Case B: Multiple scatterers ($N = 200$)

- Scattering strength selected randomly between 0 and 1
- Initial transmitted signal: point source
- Power iterations: 10 iterations to determine $\phi^{(1)}$ and then 10 to determine $\phi^{(2)}$
- Lanczos iterations: 20 iterations
- 10,000 realizations to quantify performance
- For each realization compute error in the 1st and 2nd eigenfunction
- Plot histogram of error
Numerical Test 1

Case B: Multiple scatterers ($N = 200$)

- Scattering strength selected randomly between 0 and 1
- Initial transmitted signal: point source
- Power iterations: 10 iterations to determine $\phi^{(1)}$ and then 10 to determine $\phi^{(2)}$
- Lanczos iterations: 20 iterations
- 10,000 realizations to quantify performance
- For each realization compute error in the 1st and 2nd eigenfunction
- Plot histogram of error
Numerical Test 1

Case B: Multiple scatterers \((N = 200)\)

- Scattering strength selected randomly between 0 and 1
- Initial transmitted signal: point source
- Power iterations: 10 iterations to determine \(\phi^{(1)}\) and then 10 to determine \(\phi^{(2)}\)
- Lanczos iterations: 20 iterations
- 10,000 realizations to quantify performance
- For each realization compute error in the 1st and 2nd eigenfunction
- Plot histogram of error
Numerical Test 1

Error in $\phi^{(1)}$

Power; median error = 60%

Lanczos; median error = $10^{-6}\%$
Numerical Test 1

Error in $\phi^{(2)}$

Power; median error = 100%

Lanczos; median error = $10^{-3}\%$
Numerical Test 2: Focusing

- Time-harmonic case; \(\lambda \approx 0.25 \)
- 40 Transmitters & receivers at \(y = 0 \);
 \(L_x = 6 \)
- 30 point scatterers; \(D = 6 \); 2 strong scatterers
- Solve Helmholtz equation
- Test ability to target
Numerical Test 2: Focusing

Case A: Strong contrast $= 3/2$; number of iterations $n = 4$

Power: strongest

Lanczos: strongest
Numerical Test 2: Focusing

Case A: Strong contrast $= 3/2$; number of iterations $n = 4$

Power: next

Lanczos: next
Numerical Test 2: Focusing

Case B: Weak contrast $= 2.1/2$; number of iterations $n = 8$

Power: strongest

Lanczos: strongest
Numerical Test 2: Focusing

Case C: Weak contrast $= 2.1/2$; number of iterations $n = 8$

Power: next

Lanczos: next
Numerical Test 2: Focusing

Case B: Strong contrast = $3/2$; ratio of $d_y = 2/3$; $n = 8$

Power: strongest

Lanczos: strongest
Numerical Test 2: Focusing

Case B: Strong contrast $= \frac{3}{2}$; ratio of $d_y = \frac{2}{3}$; $n = 8$
Outline

1. Introduction: Time-reversal focusing

2. Lanczos Iterated Time-reversal focusing
 - Numerical tests

3. MUSIC Imaging via Lanczos Time-reversal
 - Numerical tests
Imaging point scatterers by MUSIC:

- **Goal:** Identify locations of several point-like targets
- **Method** based on computing range of multi-static response matrix, G.
- **MUSIC** = MUltiple Signal Classification, designed to pick out dominant frequency content of a signal.
- Adapted to imaging by Devaney 2000.
- Recently recognized as related to Colton’s “Linear Sampling Method,” and Kirsch’s “Factorization Method.”
Consider a scatterer at location x_s. Characterize scattered field as:

$$u_{scat}(x) = u_{inc}(x_s) \tau_s g(x, x_s)$$ \hspace{1cm} (1)

Here,

- $u_{inc}(x_s) =$ is the total field incident on the scatterer (including multiply scattered contributions).
- $\tau_s =$ is the scattering strength of the scatterer.
- $g(x, x_s) =$ Green’s function = field at x due to a point source at x_s.
Measured field at locations \mathbf{x}_e^j, $j = 1, \ldots, N_e$ is:

$$u(\mathbf{x}_e^j) = \sum_{s=1}^{N_s} A_s g(\mathbf{x}_e^j, \mathbf{x}_s)$$

Remarks:

- Different incident fields give rise to different A_s.
- For any incident field, measured field is in $\text{Span} \{ g(\mathbf{x}_e, \mathbf{x}_s^1), g(\mathbf{x}_e, \mathbf{x}_s^2), \ldots, g(\mathbf{x}_e, \mathbf{x}_s^{N_s}) \}$.
MUSIC Imaging

Let $G =$ multistatic response matrix. Then for $N_e \gg N_s$:

\[
\text{Range}G = \text{Span}\{g(x_e, x_s^1), g(x_e, x_s^2), \ldots, g(x_e, x_s^{N_s})\} \quad (3)
\]

\[
= \text{“signal space”} \quad (4)
\]

Test for scatterer location:

\[
x \in \{x_s^1, x_s^2, \ldots, x_s^{N_s}\} \iff g(x_e, x) \in \text{Range}G \quad (5)
\]
MUSIC Imaging function.

- Let $V = N_e \times N_s$ be orthonormal projector onto signal space.
- Let $V_{noise} = I - V$ is orthonormal projector onto "noise" space.

\[
\text{indicator}(x) = \frac{1}{g'(x_e, x)V_{noise}g(x_e, x)}
\] \hspace{1cm} (6)

Remark:

- $V =$non-null eigenvectors of $GG^* = H$.
- $V_{noise} = \text{null}(GG^*) \equiv \text{null}(H)$.
Standard MUSIC Imaging

1. Excite emitters $i = 1, \ldots, N_e \gg N_s$ in turn.
2. For each excitation, i, measure $G_{ij} = \text{signal on } N_e \text{ emitters, } j$.
3. Compute $H = GG^*$.
5. Compute $V = [\phi^{(1)}, \phi^{(2)}, \phi^{(3)}, \ldots] = \text{non-null eigenvectors of } GG^* = H$.
6. Compute $V_{\text{noise}} = I - V$.
7. For each point x in region of interest, compute:

$$\text{indicator}(x) = \frac{1}{g'(x_e, x)V_{\text{noise}}g(x_e, x)}$$ (7)
Lanczos MUSIC Imaging

1. Initialization: \(\nu^{(1)} = H[\nu^{(0)}] \) (Eliminate null component of \(\nu^{(0)} \).)

2. Perform \(N_s \ll N_e \) Lanczos iterations to construct
 \[V = [\nu^{(1)}, \nu^{(2)}, \nu^{(3)}, \ldots] \]

3. Compute \(V_{\text{noise}} = I - V \).

4. For each point \(x \) in region of interest, compute:
 \[
 \text{indicator}(x) = \frac{1}{g'(x_e, x) V_{\text{noise}} g(x_e, x)}
 \]
 (8)

Remark:
- Lanczos procedure automatically stops at \(N_s \) iterations, when \(\beta = 0 \).
Lanczos vs. Standard MUSIC Imaging

- Lanczos requires *many* fewer acoustic excitations.
- Lanczos requires no eigenvalue computations.
- Lanczos procedure provides new image with each new measurement.
- But does it work?
Lanczos vs. Standard MUSIC Imaging

- Lanczos requires *many* fewer acoustic excitations.
- Lanczos requires no eigenvalue computations.
- Lanczos procedure provides new image with each new measurement.
- But does it work?
Numerical Tests: Imaging point scatterers

- Far-field array of 240 transducers (emitters).
- Time-harmonic excitation.
- Scattered field computed including multiple scattering.
- For each excitation, update V and compute indicator (x).
- Stop iterating when $\beta < \text{tolerance}$.
- Field of view $= 6 \times 6$, so $k =$ number of wavelengths across FOV.
Test 1: 16 scatterers clover pattern; $k = 9$
Test 1: 16 scatterers clover pattern; \(k = 9 \)

Iteration 2
Test 1: 16 scatterers clover pattern; \(k = 9 \)
Test 1: 16 scatterers clover pattern; $k = 9$
Test 1: 16 scatterers clover pattern; $k = 9$

Iteration 5
Test 1: 16 scatterers clover pattern; $k = 9$

Iteration 6
Test 1: 16 scatterers clover pattern; $k = 9$
Test 1: 16 scatterers clover pattern; $k = 9$

Iteration 8
Test 1: 16 scatterers clover pattern; $k = 9$

Iteration 9
Test 1: 16 scatterers clover pattern; $k = 9$
Test 1: 16 scatterers clover pattern; $k = 9$

Iteration 11
Test 1: 16 scatterers clover pattern; $k = 9$

Iteration 12
Test 1: 16 scatterers clover pattern; $k = 9$

Iteration 13
Test 1: 16 scatterers clover pattern; $k = 9$
Test 1: 16 scatterers clover pattern; $k = 9$
Test 1: 16 scatterers clover pattern; $k = 9$
Test 2: 3 scatterers in line

\[k = 10 \]
Test 2: 3 scatterers in line

$k = 1$
Test 2: 3 scatterers in line

\[k = 0.1 \]
Test 3: V-pattern of scatterers

\[k = 1 \]
Test 3: V-pattern of scatterers

\(k = 2 \)
Test 3: V-pattern of scatterers

\[k = 4 \]
Test 3: V-pattern of scatterers

\[k = 6 \]
Test 3: V-pattern of scatterers

\[k = 8 \]
Test 3: V-pattern of scatterers

$k = 10$
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 1
Test 4: 16 scatterers clover pattern; $k = 5$
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 3
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 4
Test 4: 16 scatterers clover pattern; $k = 5$
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 6
Test 4: 16 scatterers clover pattern; $k = 5$
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 8
Test 4: 16 scatterers clover pattern; \(k = 5 \)
Test 4: 16 scatterers clover pattern; $k = 5$
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 11
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 12
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 13

MUSIC image via Lanczos
Test 4: 16 scatterers clover pattern; $k = 5$

Iteration 14
Test 4: 16 scatterers clover pattern; $k = 5$
Test 4: 16 scatterers clover pattern; $k = 5$
Concluding Remarks

- Standard time reversal iterations = power method.
- Power iterations suboptimal.
- Lanczos iterations converge with far fewer transmissions.
- Few iterations \(\iff\) few acoustics transmissions.
- Lanczos provides \textit{v.} direct method for implementing MUSIC.
- \textbf{Breakdown of Lanczos:} Standard reorthogonalization needed.

Looking ahead

- Key idea: Array is analog computer for linear operator.
- Just two examples of iterative linear operator methods in signal processing and imaging.
- Opportunity: Use temporal information.
- \textbf{New Applications!}