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Measuring Interior Displacement

Inverse Ultrasound shows interior of deforming medium.

Elasticity

X
1

Measuring interior
displacement data

X+U X+U





Ultrasound Elastography: Strain Imaging[1]
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Ultrasound Elastography: Strain Imaging[1]
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Ultrasound Elastography: Strain Imaging[1]
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Strain images show "invisible" inclusions
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Strain images show "invisible" inclusions
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Potential Applications
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Measuring tissue elastic property distribution in vivo

Measuring interior
displacement data

@ Diseases: cancer, arterio-schlerosis, DVT, plaques,
fibrosis, lymphedema, scirrhosis.

@ Clinical: screening, differential diagnosis, treatment
monitoring.

@ Biomechanical function: muscles, lungs, cochlea,
vascular tissue, bones, cartilage.

@ Mechanobiology: cartilage, bone, cancer.




Necessary Ingredients
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@ Applied Deformation: Internal motion, external static,
time-harmonic, mechanical, free-hand, via probe,
radiation force.

@ Imaging: Ultrasound, MR, microCT, OCT.

@ Interpretation: Displacement, velocity, strain,
reconstructed properties.
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Acoustic Radiation Force[3, 4, 5]
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F ~2al/c (1)

Measuring interior
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Acoustic Radiation Force Imaging
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Interpretation:

vessary e @ Algebraic inversion';
@ Travel time?;

@ Time-to-peaks;

@ Vibro-acoustography?;

@ Static strain®

'Oliphant,et al. 2001
2McLaughlin, et al. 2004
3Nightingale, et al. 2008
*Greenleaf, et al. 1998
5Bamber, et al. 2007
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Necessary Ingredients
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@ Applied Deformation: Internal motion, external static,
time-harmonic, mechanical, free-hand, via probe,
radiation force.

@ Imaging: Ultrasound, MR, microCT, OCT.

@ Interpretation: Displacement, velocity, strain,
reconstructed properties.



MR Elastography[7]
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Measuring interior
displacement data
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(Manduca & Oliphant [6])




MRE: Algebraic Inversion
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quu =

= T

uVeV xu =

= pu

Algebraic Inversion (Manduca & Oliphant[6]):

Modified Algebraic Inversion [8]:

—pwlu (2)
wlu
- (3)
—pw?V x U (4)
_pw2|V X U

V2V x u|



Mathematical Modeling[9, 10]
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Experimental Conditions Modeling Assumptions
@ Small Strains @ Single phase
@ Excitation: 1 Hz — 1 kHz @ Elastic: o = f(e)

@ Isotropic.



Mathematical Modeling[9, 10]
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Experimental Conditions Modeling Assumptions

@ Small Strains @ Single phase
@ Excitation: 1 Hz — 1 kHz @ Elastic: o = f(e)
@ Isotropic.

Momentum and Constitutive Eqns:

VAV -u)+ V- (uVu)+V - (uVu)" = poyu  (6)
+boundary conditions (7)



Some elastic parameter estimates[11]
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Fwd Model

@ Longitudinal wave speed:

cL=+/(AN+2u)/p=1540m/s £ 5%

@ Shear wave speed: ¢cs = \/u/p=1—-10m/s
@ Poisson’s ratio: v ~ 1/2.
@ Density: p = 1000 kg/m® + 5%



Some elastic parameter estimates[11]
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Relations between elastic constants:

_ .~ E _  2uv
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Fwd Model

Longitudinal wave speed:

cL=+/(AN+2u)/p=1540m/s £ 5%

@ Shear wave speed: ¢s = \/u/p=1—10m/s
@ Poisson’s ratio: v ~ 1/2.

@ Density: p = 1000 kg/m® + 5%

@ — )\~ constant = pc? £ 10%

e — )\ u=~10°



Incompressible Elasticity Forward Model

| H H .
Elastiofty Momentum and Constitutive Egns:
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—Vp+ V- (uVu)+V-(uvu) = popu (9)
V-u = —-p/A—0 (10)
+boundary conditions (11)

Fwd Model



Incompressible Elasticity Forward Model

| H H .
Elastiofty Momentum and Constitutive Eqns:
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—Vp+ V- (uVu)+V-(uvu) = popu (9)

V-u = —-p/A—0 (10)

+boundary conditions (11)
Remarks:

@ Crude (but effective) model: p = 0; 1 ~ const.

V32U + pwPdpu =0 (12)



Incompressible Elasticity Forward Model

| H H .
Elastiofty Momentum and Constitutive Eqns:
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—Vp+ V- (uVu)+V-(uvu) = popu (9)

V-u = —-p/A—0 (10)

+boundary conditions (11)
Remarks:

@ Crude (but effective) model: p = 0; 1 ~ const.

V32U + pwPdpu =0 (12)

@ “Worse” model:

V- (uVU) + puw?dgu =0 (13)
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Inverse Problem Statement
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I Given u(x,t), p, for x € Q, determine p(x) such that:

—Vp+2V - (ue) = poy bu (14)
+boundary conditions (15)
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© Plane Stress

Plane Stress



Plane Stress Approximation

Inverse
Elasticity

No confining stress out of the plane.



Stress-strain relations

Inverse

Elasticity Plane stress assumption:

Oxz = Oyz = 0zz =0zx = 0zy = 0, (16)

— OzUx = Ozuy = 0. (17)
Solve for p using o, = 0 and incompressibility:
P = 2puezz = —2p(exx + €yy). (18)
Then stress-strain relation reduces to:

o = 2u(x)A (19)
AX) = enal+€(X) (20)

10
= 2(exx + €yy) [o 1]+2[Z§ Zﬂ (21)



Momentum Equation
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Momentum egn becomes:

Ox(2ulexx + €yy)) + 20x(pexx) + 20y (nexy) = pOnUx22)
u(2ulexx + €yy)) + 20x(peyx) + 20y (peyy)

Il
>

(5
<
=

[\S)
)

Symbolically:

V- (nA) = popu (24)



Inverse Problem Solution
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ST Integrating (25) with dyu = 0 gives:

b '¢
u(x) = M(xo)exp{— A1VA-dx’} (26)
X,

nversion



Inverse Problem Solution
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Integrating (25) with dyu = 0 gives:

u(x) = p(xo)exp {— XA*1VA . dx’} (26)
Remarks: Xo
@ One unknown constant: solution is unique!
@ See [12] for transient case.
@ Solvability condition: V x [A~'V - A] = 0.
e Solution may not exist!!!
@ V- A= uistwice differentiable.
@ “Worse" model exact solution similarly available.




Summary: Plane Stress

Inverse
Elasticity

Barbone

@ Inverse solution is unique (when given uy and uy) up to
calibration constant.

@ Inverse problem is well-posed subject to solvability
condition and calibration constant.

@ uy and uy are constrained by nonlinear pde in the form
of integrability condition.

@ Transient problem = forced static problem
parameterized by time.

@ Exact solution exists, but requires u to be twice
differentiable and yields continuous p.

@ Structure nearly identical to LFCI/MREIT.
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Plane Strain

e Plane Strain



Plane Strain Approximation
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Scan Plane

Confinement out of the plane prevents expansion.



Stress-strain relations
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Barbone Plane strain assumption:

€Exz = €yz — €zz = €zx — €zy — 0, (27)

Stress-strain relation reduces to:

Forward Model g = _p1 + 2/1/6 (29)
e(x) = [GXX GXV}. (30)
€yx  CEyy

Remark: Pressure p is completely undetermined, unlike
Plane Stress.



Momentum Equation
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Momentum eqgn becomes:
~Vp+2V-(ue) = ponu (31)
In detail:

—0xp + 20x(pexx) + 20y (nexy) = pOnlx (32)
—0yp + 20x(peyx) + 20y (neyy) = pOnuy. (33)



Plane Strain Inversion Equation
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Barbone El|m|nate p by tak|ng Cur|(31 ):

(8yy - axx)(ﬁxy w) + 28xy(€xx n) = POrwyx (34)

Remarks:
@ Hyperbolic, linear PDE.
@ Characteristics are principal directions of strain.

@ Requires boundary data (e.g. Cauchy or Goursat) to
make well-posed.

@ For any p that satisfies (34), 3p such that (32,33) are
satisfied.

@ See [13, 14] for details.



Example of Nonuniqueness: Uniform strain
field[13]
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Suppose we are given measurements:
Exx = _eyy — 60 — ConSt (35)
Then (34) gives:

€o0xyp = 0; = (X, y) = f(x) +9(y). (36)

@ Solution is determined only up to two independent
functions of a single variable.

@ Need boundary data related to .



Choosing from among all possible solutions
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There are infinitely many modulus reconstructions for any
given €. How do we choose?

Three possible strategies:
@ Use regularization

e Choose smallest possible .
e Choose smoothest possible p.

@ Use traction BC’s.

e Approximate (guess) boundary conditions.
e Measure boundary conditions.

@ Use additional measured deformations.
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Available boundary data?
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Hyperbolic egn w/ Dirichlet data? Maybe it’s just as well...
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Multiple strain fields: uniqueness[14]
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Given two mutually compatible, linearly independent strain
fields, (V) and (@, everywhere nonzero in Q, with distinct
eigendirections except at isolated points. Let M) be the set
of all functions y such that:

LD)u = o (37)

Then:
M) \M2) < 4dimensional.  (38)




Summary: Plane strain well-posedness
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Elasticity

Remarks:

@ Infinite number of solutions exist for single measured
strain field.

@ Transient problem = forced static problem
parameterized by time.

@ Single strain field with known traction BCs gives unique
but unstable modulus distribution.

@ With two measured strain fields, need four calibration
constants to determine complete solution; solution is
(probably) stable. Proof assumes p € C*.

@ Not every pair of measured strain fields is mutually
compatible: chance for averaging.

Barbone



Direct Solution Strategies
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Given u™(x) = measured displacement field Vx € Q.
Direct Inversion: Find p(x) (and p(x)) s.t.

—Vp+ V- (uvVu™) +V - (uvu™)T =0 (39)

Remarks:
@ Computationally efficient.
@ No boundary conditions specified or needed for u™.
@ Assumes u is a solution of the elasticity equation.

@ Accuracy limited by least accurate displacement
component.



lterative/Optimization Solution Strategies

Inverse

Elasticity Given u™(x) = measured displacement field Vx € Q.
Barbone lterative Inversion: Define u[y] s.t.

—Vp+V-(uVu)+V-(uvu)T = 0 (40)
V-u =0 (41)
+boundary conditions (42)
Find p(x) to minimize:
Nu] = [[u—u"|| + aR[y] (43)

Remarks:
@ Flexible but computationally intensive.
@ Accommodates variety of corrupted data.
@ Accuracy limited by accuracy of boundary conditions.
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Examples

e Very few Examples: Images from lab and clinic.



Example: Phantom Images

Jmverse Example: 5 mm Inclusion
asticity
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US Image

Axial Strain
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Example: Phantom Images

Jmverse Example: 5 mm Inclusion
asticity
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Resolution Experiment

Size:| Large: Medium: Small:
Stiffness: 13 mm 8 mm 5 mm
Large: el
31 Visible!
Medium:




Resolution Experiment
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Size:
Stiffness: 13 mm 8 mm

Large:
3:1

Medium:
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Results from Clinical Images®
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(KU0031) Fibroadenoma (benign tumor):
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w/ TJ Hall, U Wisc; AA Oberai, RPI



Results from Clinical Images®
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Results from Clinical Images: IDC (CC193)
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Results from Clinical Images: IDC (CC193)
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Tumor heterogeneity hallmark of malignancy
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Fibroadenoma Invasive Ductal Carcinoma
(benign tumor) (malignant tumor)

Examples
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e Some open questions & challenges in elasticity imaging



Challenge 1: Discontinuous Material Properties
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Barbone Adjoint weighted variational equation (plane stress).
Given A. Let V = {w € H'(Q)| [ wdQ = 0}. Assume:

eV -Ac Q)
@ JCsand Cs s.t.

(w,(V - A)2w) < Ci(Vw, A2Vw) < Co||lw|?  (44)

e Define: b(w, ) = (AVW, V - (Ap))

@ /= [i+ fio.
Wish lst AWE: Find ji € V s.t.

b(w,u)=0 Yw eV (45)



Challenge 1: Discontinuous Material Properties
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Remarks:
@ AWE (45) is well-posed.
@ b(-,-) is coercive on V.

@ From coercivity, comes:

@ Uniqueness & existence (Lax-Milgram).
@ Equivalence to strong form.
© Convergence with Galerkin discretization.

Wish list



Challenge 1: Discontinuous Material Properties
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Challenge 1: Discontinuous Material Properties
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Remarks:

@ Strong (exact) solution, AWE formulation, and least
squares all require u € H?, or smoother.

@ All methods give 1 € H' or smoother.

© Can we obtain a direct formulation that allows u € H',
u € Ly, consistent with the forward problem?

Wish list
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Challenge 2: Discontinuous Material Properties

anverse Optimization formulation of inverse problem.
asticity
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cludpl = Glu-u"R+ah g (46)
adup) = (AV-(na)) (47)
S={ueHQ)|u=u"onTl} (48)
V={veHQ)|v=0o0nT} (49)
Wieh e P={AeH(Q) |Ax=00nT} (50)
A={neH"@)| [ nd2—p) (51)

Q

B={yeH"Q] /de9=0} (52)



Challenge 2: Discontinuous Material Properties
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Remarks:
@ Forward problem well defined for i € Ly, u € H'.
@ Can prove optimization problem well posed for u € H?
and p e H'.

© Can we prove the optimization formulation is
well-posed for u € H', i1 € Ly, consistent with the
forward problem?

© What are the weakest spaces where we can pose this
problem?

Wish list
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Inverse
Elasticity

Remarks:
@ Forward problem well defined for i € Ly, u € H'.

@ Can prove optimization problem well posed for u € H?
and p e H'.

© Can we prove the optimization formulation is
well-posed for u € H', i1 € Ly, consistent with the
forward problem?

© What are the weakest spaces where we can pose this
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Challenge 3: New Forward FEM formulations
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Consider optimization formulation of inverse problem.

1
Clup] = Slu—u"F+a(Xup)  (59)

a(nup) = (AV-(na)) (54)

@ Discretize by standard FEM

e u" bilinear interpolation over element.
Wish list e 1" constant over each element.

@ “Measure" Uy = y consistent with © = const.
@ Solve by Newton iterations.



Challenge 3: New Forward FEM formulations
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w distribution

@ Noiseless data.

@ Both data and modulus
solution are exactly
04 representable on mesh.

@ Elasticity equations
reduce to:

Wish list A Oxpe=0; dyp =0 (55)
Reconstructed p



Challenge 3: New Forward FEM formulations

Inverse
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Remarks:
@ Exact (strong) solution is i = constant.
© Checkerboard exactly satisfies FEM equations at
u=um
© Checkerboard violates strong elasticity equations.

© Strong elasticity egn has enough information to
determine p.

© Discrete (weak) eqn does not!

Wish list

© New discretization of forward problem needed to
adequately enforce physical constraints.
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Challenge 4: Multiple Data Sets

Inverse

SElEly Multiple datasets stabilizes inverse problem, reduces

ambiguity. Given u]m, f=1,..., Nmeas, measured
displacement fields.

AWE or LS formulation:

Nmeas

b(w,p)= Y b(w,u)=0 VweV (56)
j=1

Optimization formulation:

Wish list

Nmeas

Nl = lu—ufll} (57)
j=1



Challenge 4: Multiple Data Sets

Inverse
Elasticity

Open questions:

@ For plane strain and 3D, multiple deformations required
for uniqueness. How “different" must they be?

@ Uniqueness for plane strain assumes distinct
characteristics. What if they are the same?

© Appropriate scaling and “orthogonalization” of data?

Wish list
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Challenge 4: Multiple Data Sets

Inverse
Elasticity

Linearity of forward problem:
If uf” and u3’ are solutions of the forward problem, then

ul = auf+(1-a)uy (58)
uij = pui+(1-p)ug (59)

are valid data sets.

@ Conditioning, and hence solution, of the inverse
problem depends upon choice of o and 3.

Wish list

@ « and [ probably ought to be selected so that ul) and
ug’ are orthonormal in some sense.

@ What sense?




Challenge 4: Multiple Data Sets

Inverse
Elasticity

Linearity of forward problem:
If uf” and u3’ are solutions of the forward problem, then

ul = auf+(1-a)uy (58)
uij = pui+(1-p)ug (59)

are valid data sets.

@ Conditioning, and hence solution, of the inverse
problem depends upon choice of o and 3.

Wish list

@ « and [ probably ought to be selected so that ul) and
ug’ are orthonormal in some sense.

@ What sense?




Challenge 5: Single (accurate) displacement

component

Inverse

Sy Ultrasound (currently) provides accurate measurement of
sarbone “axial” component of u, but relatively noisy estimate of
orthogonal components.

Questions & Opportunities:

@ What are the implications for uniqueness?

© Plane stress: Solvability condition gives nonlinear pde
coupling uy to uy:

Vx[AT'V-A=0. (60)

Wish list © Plane strain: Incompressibility condition gives linear
pde coupling uy to uy:

V-u=0. (61)



Inverse
Elasticity

Barbone

Wish list

w

rec

in3D

W

rec

as Plane Strain

w

rec

as Plane Stress

3.5

2.5



Challenge 7: Three-dimensional uniqueness

Inverse
Elasticity

Eliminate pressure from momentum equation:

2V x [V - (ue)] = pouV x u (62)

Questions:
@ Eqgn (62) is “hyper-hyperbolic". What are its solution
properties? What data does it require?
@ Given two sufficiently smooth measurements (i.e.

Wish st equation coefficients €(x)), what is the dimension of the
solution space?



Challenge 7: Three-dimensional uniqueness

Inverse

Elasticity Example - Uniform Strain:

Barbone

Uy = €X
uy = ey
u, = 632
with:
€1 +e+e3=0,
€1 7 €2 7 €3 7 €1.
Wish list
Then:

p(x,y,2) = f(x) + g(y) + h(2).




Challenge 7: Three-dimensional uniqueness

Inverse

Elasticity Example - Uniform Strain:

Barbone

Uy = €X
uy = ey
u, = 632
with:
€1 +e+e3=0,
€1 7 €2 7 €3 7 €1.
Wish list
Then:

u(x,y,z) = f(x) + 9(y) + h(2).
Structure similar to plane strain




Challenge 8: Anisotropy’

Inverse
Elasticity

Barbone

Wish list

@ Improve understanding of osteoporosis.

@ Image with uCT.

@ Reconstruct distribution of aniostropic mat’l props.
"E.F. Morgan, unpub 2007




Challenge 8: Anisotropy®

Inverse
Elasticity

Barbone

C55
E C.151 86 (:.102960 0.212 91 033740 m2
] 514 0720 143 0555 0.840
& Maar Hosao Hosss Hosmo Hoseo
c 171 0.240 0477 0.185 0.280
S Bo00 Moo .00 Moo Moo
B x107 x10% x10? x10° x10°
14
Wih list Loading along 3 orthogonal axes are insensitive to Css.

What loadings give unique reconstruction?

8A.A. Oberai & E.F. Morgan, unpub 2007



Biomechanical Imaging Summary

Inverse
Elasticity

@ Nice inverse problems with lots of applications.

@ Pressure field due to incompressibility introduces
ambiguity. Not to be neglected!

@ Strain imaging and plane stress: enough “extra
information” in the assumed model.

@ Plane strain and 3D: need additional information.
@ Open problems with elasticity imaging:
e Discontinuous material properties: uniqueness;
well-posedness.
e Forward solutions!
e Balancing multiple datasets.
o Nearly everything about 3D.

Summary
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Biomechanical Imaging Summary

Inverse
Elasticity

Broader outlook:
@ Linear shear stiffness.

@ Nonlinear stiffness.

@ Anisotropy.

@ Viscosity.

@ Hysteresis.

@ Compressibility (for f < 0.1Hz).
@ Porosity & Permeability.

@ Slip boundaries & friction on fascia.
e &c.

Summary
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Inverse
Elasticity

Broader outlook:
@ Linear shear stiffness.

@ Nonlinear stiffness.

@ Anisotropy.

@ Viscosity.

@ Hysteresis.

@ Compressibility (for f < 0.1Hz).
@ Porosity & Permeability.

@ Slip boundaries & friction on fascia.
e &c.
There remains lots of math and engineering to be done.

Summary
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