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Measuring Interior Displacement

Ultrasound shows interior of deforming medium.

u u

xx

x+u x+u

I (x) = 0 I (x+u)1

=⇒ u(x) (1)
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Ultrasound Elastography: Strain Imaging[1]
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Ultrasound Elastography: Strain Imaging[1]
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Ultrasound Elastography: Strain Imaging[1]

z
 (

m
m

)

x (mm)
5 10 15 20 25 30

5

10

15

20

25

30

35

Pre-compression
Ultrasound Image

z
 (

m
m

)

x (mm)
5 10 15 20 25 30

5

10

15

20

25

30

35

Post-compression
Ultrasound Image

5 10 15 20

5

10

15

20

25

30
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Displacement
Image



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Strain images show "invisible" inclusions
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Strain images show "invisible" inclusions

Interpretation
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Potential Applications

Measuring tissue elastic property distribution in vivo

Diseases: cancer, arterio-schlerosis, DVT, plaques,
fibrosis, lymphedema, scirrhosis.
Clinical: screening, differential diagnosis, treatment
monitoring.
Biomechanical function: muscles, lungs, cochlea,
vascular tissue, bones, cartilage.
Mechanobiology: cartilage, bone, cancer.
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Necessary Ingredients

Applied Deformation: Internal motion, external static,
time-harmonic, mechanical, free-hand, via probe,
radiation force.
Imaging: Ultrasound, MR, microCT, OCT.
Interpretation: Displacement, velocity, strain,
reconstructed properties.
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Acoustic Radiation Force[3, 4, 5]

F ≈ 2αI/c (1)palmeri et al.: fem model to simulate response of tissues 1705

Fig. 2. Subfigure (a) shows the simulated distribution of acoustic radiation force in the axial-lateral plane, centered in elevation, for an
F/1.3 focal configuration, focused at 20 mm, with α = 0.7 dB/cm/MHz. The transducer would be centered at the top of these images.
Brighter pixels indicate greater radiation force magnitude. Subfigures (b)–(d) show the normalized FEM displacement fields resulting from
this acoustic radiation force distribution, 0.6, 1.0, and 2.2 ms after the excitation, respectively, in an 8.5 kPa medium. Subfigures (e)–(g)
show the normalized experimental ARFI displacement data from the 100 bloom gelatin phantom, again, for the same time steps. Brighter
pixels in the displacement images represent greater displacement away from the transducer.

be centered on the top of the image, and brighter pixels
correspond to greater radiation force values. Figs. 2(b)–(d)
show normalized displacement profiles in this same plane
for an 8.5 kPa material 0.6, 1.0, and 2.2 ms after excitation,
with brighter pixels indicating greater displacement away
from the transducer. Figs. 2(e)–(g) show the correspond-
ing normalized experimental displacement fields in the 100
bloom phantom for the same time steps. Throughout the
rest of this paper, displacement profiles will be shown as
a function of axial position, centered laterally, and as a
function of lateral position at the focal depth.

The ARFI imaging displacement fields were compared
between FEM models and experimental data in four differ-
ent homogeneous media: CIRS, 100 bloom, 150 bloom, and
200 bloom phantoms. The MTS-measured Young’s mod-
uli of these phantoms are summarized in Table II. Fig. 3,

row A shows data from the CIRS phantom (focal depth of
15 mm, F/1.3 focal configuration). Rows B–D show data
from the 100 bloom, 150 bloom, and 200 bloom gelatin
phantoms, respectively (focal depth of 20 mm, F/1.3 focal
configuration). Subplots i–iii show normalized axial dis-
placement profiles, laterally centered in the ROE as a func-
tion of depth away from the transducer. Subplots iv–vi
show normalized axial displacements at the focal depth of
15 mm, spanning ±6 mm laterally from the center of the
ROE for different specified times after cessation of a 45 µs
ARFI excitation pulse. The solid lines represent the FEM
data, and the dashed lines represent experimental data
(mean of six independent trials) acquired with the VF10-
5 transducer. The shear wave speeds measured from the
FEM and experimental ARFI data [14] are summarized in
Table III. Table IV shows a comparison of the maximum

(1). Young’s moduli (E) could be estimated by E ! 2(1
" v)! ! 3!, where v ! 0.5 is an incompressible
material’s Poisson’s ratio, but only values for shear mod-
ulus (!) are quoted herein.

This procedure is graphically demonstrated in Fig. 3
using the simulation data sampled at 10 kHz. (Note that
these data would be upsampled to 50 kHz before being
processed with the Lateral TTP algorithm.) When two
adjacent time steps happened to yield the same peak
displacement values, the smaller time step was chosen.

Numerical methods
Three-dimensional FEM models of the dynamic

response of elastic media to impulsive acoustic radiation
force excitations were used to study the accuracy of the
proposed method in reconstructing shear moduli ranging
from 1.3–16 kPa. These shear moduli represent those
reported for healthy through cirrhotic livers (Foucher et
al. 2006; Sandrin et al. 2003). These models have been
previously validated to accurately simulate shear waves
that are generated in response to impulsive acoustic
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(a) µ )b(aPk33.1= µ = 8 kPa
Fig. 3. Simulated displacement through time profiles, without ultrasonic tracking, at lateral positions offset from the
excitation location for elastic media with shear moduli of (a) 1.33 kPa and (b) 8 kPa. Notice that the curve appears more
finely sampled in the more compliant medium (1.33 kPa) because of its slower propagation speed and the fixed 10-kHz
temporal sampling (simulating a fixed PRF in the experimental system). The vertical dotted lines indicate the TTP values
that would be estimated from this data, although experimentally the data would be upsampled using a low-pass

interpolation from the acquired PRF to 50 kHz. Notice that the two plots are on different time scales.
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Fig. 4. (a) TTP displacement data at the focal depth (20 mm) as a function of lateral position in simulation data for elastic
materials, with shear moduli of 1.33 and 2.83 kPa. The inverse slopes of these lines represent the shear wave speeds in
these materials. (b) Reconstructed shear moduli over depths from 16–20 mm (focal depth) using the Lateral TTP
algorithm on the simulated datasets for 1.33 (x) and 2.83 (o) kPa shear moduli. The nontracked FEM data are
represented by the red (x) and blue (o) lines, with the mean # one standard deviation shear modulus estimates over the
range of depths represented in each colored text box. The corresponding tracked data, using 20 independent speckle
realizations, is shown in the black lines (mean # one standard deviation) for the 1.33 (x) and 2.82 (o) kPa media, again
with the text boxes representing the mean # one standard deviation shear modulus estimates over the range of depths.
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Distribution of ARF[2] Transient Displacement
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Acoustic Radiation Force Imaging

Interpretation:
Algebraic inversion1;
Travel time2;
Time-to-peak3;
Vibro-acoustography4;
Static strain5

1Oliphant,et al. 2001
2McLaughlin, et al. 2004
3Nightingale, et al. 2008
4Greenleaf, et al. 1998
5Bamber, et al. 2007
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ARFI Supersonic Imaging
(www.supersonicimagine.fr)


animation_1.flv.mp4

created with SUPER(C).v2008.bld.30

2008-07-02  21:15:22



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Necessary Ingredients

Applied Deformation: Internal motion, external static,
time-harmonic, mechanical, free-hand, via probe,
radiation force.
Imaging: Ultrasound, MR, microCT, OCT.
Interpretation: Displacement, velocity, strain,
reconstructed properties.
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MR Elastography[7]

A. Manduca et al. / Medical Image Analysis 5 (2001) 237–254 241

Fig. 2. Object with diameter comparable to wavelength. (a) Shear waves propagating in a phantom with an embedded 1.5 cm diameter cylinder of stiffer

gel. Shear waves at 300 Hz were applied at the top margin of the gel block, with transverse motion oriented orthogonal to the plane of the image. (b) The

elastogram based on LFE processing clearly depicts the object, even though it is relatively small in comparison to the wavelength.

1996a; Kruse et al., 2000). MRE also benefits from a 5. Data processing

freely oriented field of view unencumbered by the ‘acous-

tic window’ required for ultrasound-based techniques. A variety of approaches can be used to invert the

Given the sensitivity of the MRE method to cyclic displacement data to recover mechanical properties. These

motions with amplitudes as small as 100 nm (less than the are characterized below by the assumptions or simplifica-

wavelength of light), one might wonder whether the tions made in their derivations. It is possible to deduce

technique will be inordinately sensitive to physiologic quantitatively accurate values of properties such as shear

motion. We have found that it is highly sensitive only to modulus in favorable situations. In general, however,

motion that is precisely synchronized with the sensitization despite the richness of the data set and the variety of

gradients, and is little more sensitive to physiologic motion processing techniques, it remains a challenge to extract

than a conventional gradient echo sequence (Muthupillai et accurate results at high resolution in complex, heteroge-

al., 1996b). Sensitivity to non-synchronous motion can be neous objects from the intrinsically noisy data.

further reduced by explicitly nulling the individual mo-

ments of the gradient waveform. It is also possible to

5.1. Equations of motionamplitude modulate (apodize) the envelope of the motion-

encoding waveform to further increase its spectral selec-

The mechanical quantities we wish to characterize aretivity (Muthupillai and Ehman, 1997). Our results to date

those that relate the strain to stress, and since the displace-have not revealed any undue limitations due to physiologic

ments in MRE are very small (on the order of microns), amotion.

linear relationship can be assumed between these. In theIn summary, MRE offers: direct visualization and

general case, stress and strain are related by a rank 4 tensorquantitative measurement of tissue displacements, high

with up to 36 independent quantities (Auld, 1990). If onesensitivity to very small motions, a field of view unen-

assumes that the material is isotropic, this reduces to twocumbered by acoustic window requirements, and the

independent quantities, the Lame constants l and m,ability to obtain full 3D displacement information through-

related to longitudinal and shear deformation respectively.out a 3D volume. As shown below, under some assump-

The isotropic relation between stress and strain is given bytions this allows direct local inversion of the data to

recover elasticity, with no need for boundary conditions or

the estimation of a stress field. s 5 2me 1ld e , (2)ij ij ij nn

(Manduca & Oliphant [6])
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MRE: Algebraic Inversion

Algebraic Inversion (Manduca & Oliphant[6]):

µ∇2u = −ρω2u (2)

⇒ µ = −ρω
2u

∇2u
(3)

Modified Algebraic Inversion [8]:

µ∇2∇× u = −ρω2∇× u (4)

⇒ µ = −ρω
2|∇ × u|

|∇2∇× u| (5)
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Mathematical Modeling[9, 10]

Experimental Conditions
Small Strains
Excitation: 1 Hz – 1 kHz

Modeling Assumptions
Single phase
Elastic: σ = f (ε)

Isotropic.

Momentum and Constitutive Eqns:

∇(λ∇ · u) +∇ · (µ∇u) +∇ · (µ∇u)T = ρ∂ttu (6)
+boundary conditions (7)



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Mathematical Modeling[9, 10]

Experimental Conditions
Small Strains
Excitation: 1 Hz – 1 kHz

Modeling Assumptions
Single phase
Elastic: σ = f (ε)

Isotropic.

Momentum and Constitutive Eqns:

∇(λ∇ · u) +∇ · (µ∇u) +∇ · (µ∇u)T = ρ∂ttu (6)
+boundary conditions (7)



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Some elastic parameter estimates[11]

Relations between elastic constants:

µ ≡ G =
E

2(1 + ν)
; λ =

2µν
(1− 2ν)

(8)

Longitudinal wave speed:

cL =
√

(λ+ 2µ)/ρ = 1540m/s ± 5%

Shear wave speed: cS =
√
µ/ρ = 1− 10m/s

Poisson’s ratio: ν ≈ 1/2.
Density: ρ = 1000 kg/m3 ± 5%

=⇒ λ ≈ constant = ρc2
L ± 10%

=⇒ λ/µ ≈ 106
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Incompressible Elasticity Forward Model

Momentum and Constitutive Eqns:

−∇p +∇ · (µ∇u) +∇ · (µ∇u)T = ρ∂ttu (9)
∇ · u = −p/λ→ 0 (10)

+boundary conditions (11)

Remarks:
Crude (but effective) model: p = 0; µ ≈ const.

µ∇2u + ρω2∂ttu = 0 (12)

“Worse” model:

∇ · (µ∇u) + ρω2∂ttu = 0 (13)
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Inverse Problem Statement

Given u(x , t), ρ, for x ∈ Ω, determine µ(x) such that:

−∇p + 2∇ · (µε) = ρ∂tt bu (14)
+boundary conditions (15)



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Outline

1 Background: Available data
Measuring interior displacement data
Going Forward: Math Model for Tissue Deformation

2 Inverse Problem Statement

3 Plane Stress
Forward Model
Inversion

4 Plane Strain
Forward Model
Inversion

5 Very few Examples: Images from lab and clinic.
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Plane Stress Approximation

Scan PlaneAp
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Bulging! 

No confining stress out of the plane.
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Stress-strain relations

Plane stress assumption:

σxz = σyz = σzz = σzx = σzy = 0, (16)
→ ∂zux = ∂zuy = 0. (17)

Solve for p using σzz = 0 and incompressibility:

p = 2µεzz = −2µ(εxx + εyy ). (18)

Then stress-strain relation reduces to:

σ = 2µ(x)A (19)
A(x) = εαα1 + ε(x) (20)

= 2(εxx + εyy )

[
1 0
0 1

]
+ 2

[
εxx εxy
εyx εyy

]
. (21)
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Momentum Equation

Momentum eqn becomes:

∂x (2µ(εxx + εyy )) + 2∂x (µεxx ) + 2∂y (µεxy ) = ρ ∂ttux(22)
∂u(2µ(εxx + εyy )) + 2∂x (µεyx ) + 2∂y (µεyy ) = ρ ∂ttuy .(23)

Symbolically:

∇ · (µA) = ρ ∂ttu (24)
A∇µ+ µ(∇ · A) = ρ ∂ttu (25)
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Inverse Problem Solution

Integrating (25) with ∂ttu = 0 gives:

µ(x) = µ(xo) exp

{
−
∫ x

x o

A−1∇A · dx ′

}
(26)

Remarks:
One unknown constant: solution is unique!
See [12] for transient case.
Solvability condition: ∇× [A−1∇ · A] = 0.

Solution may not exist!!!

∇ · A⇒ u is twice differentiable.
“Worse" model exact solution similarly available.
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Summary: Plane Stress

Inverse solution is unique (when given ux and uy ) up to
calibration constant.
Inverse problem is well-posed subject to solvability
condition and calibration constant.
ux and uy are constrained by nonlinear pde in the form
of integrability condition.
Transient problem = forced static problem
parameterized by time.
Exact solution exists, but requires u to be twice
differentiable and yields continuous µ.
Structure nearly identical to LFCI/MREIT.
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Outline

1 Background: Available data
Measuring interior displacement data
Going Forward: Math Model for Tissue Deformation

2 Inverse Problem Statement

3 Plane Stress
Forward Model
Inversion

4 Plane Strain
Forward Model
Inversion

5 Very few Examples: Images from lab and clinic.

6 Some open questions & challenges in elasticity imaging
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Plane Strain Approximation

Scan Plane

Confinement out of the plane prevents expansion.
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Stress-strain relations

Plane strain assumption:

εxz = εyz = εzz = εzx = εzy = 0, (27)
→ ∂zux = ∂zuy = 0. (28)

Stress-strain relation reduces to:

σ = −p1 + 2µε (29)

ε(x) =

[
εxx εxy
εyx εyy

]
. (30)

Remark: Pressure p is completely undetermined, unlike
Plane Stress.
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Momentum Equation

Momentum eqn becomes:

−∇p + 2∇ · (µε) = ρ ∂ttu (31)

In detail:

−∂xp + 2∂x (µεxx ) + 2∂y (µεxy ) = ρ ∂ttux (32)
−∂yp + 2∂x (µεyx ) + 2∂y (µεyy ) = ρ ∂ttuy . (33)
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Plane Strain Inversion Equation

Eliminate p by taking curl(31):

(∂yy − ∂xx )(εxy µ) + 2∂xy (εxx µ) = ρ∂ttωyx (34)

Remarks:
Hyperbolic, linear PDE.
Characteristics are principal directions of strain.
Requires boundary data (e.g. Cauchy or Goursat) to
make well-posed.
For any µ that satisfies (34), ∃p such that (32,33) are
satisfied.
See [13, 14] for details.
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Example of Nonuniqueness: Uniform strain
field[13]

Suppose we are given measurements:

εxx = −εyy = εo = const. (35)

Then (34) gives:

εo∂xyµ = 0; =⇒ µ(x , y) = f (x) + g(y). (36)

Solution is determined only up to two independent
functions of a single variable.
Need boundary data related to µ.
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Choosing from among all possible solutions

There are infinitely many modulus reconstructions for any
given ε. How do we choose?

Three possible strategies:
1 Use regularization

Choose smallest possible µ.
Choose smoothest possible µ.

2 Use traction BC’s.
Approximate (guess) boundary conditions.
Measure boundary conditions.

3 Use additional measured deformations.
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Three possible strategies:
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2 Use traction BC’s.
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Measure boundary conditions.

3 Use additional measured deformations.
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Available boundary data?

Transducer

?

?

?
??
?
?

?

Hyperbolic eqn w/ Dirichlet data? Maybe it’s just as well...
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Multiple strain fields: uniqueness[14]

Theorem:

Given two mutually compatible, linearly independent strain
fields, ε(1) and ε(2), everywhere nonzero in Ω, with distinct

eigendirections except at isolated points. Let M(j) be the set
of all functions µ such that:

L(ε(j))µ = 0. (37)
Then:

M(1)
⋂

M(2) ≤ 4 dimensional. (38)
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Summary: Plane strain well-posedness

Remarks:
Infinite number of solutions exist for single measured
strain field.
Transient problem = forced static problem
parameterized by time.
Single strain field with known traction BCs gives unique
but unstable modulus distribution.
With two measured strain fields, need four calibration
constants to determine complete solution; solution is
(probably) stable. Proof assumes µ ∈ C4.
Not every pair of measured strain fields is mutually
compatible: chance for averaging.
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Direct Solution Strategies

Given um(x) = measured displacement field ∀x ∈ Ω.
Direct Inversion: Find µ(x) (and p(x)) s.t.

−∇p +∇ · (µ∇um) +∇ · (µ∇um)T = 0 (39)

Remarks:
Computationally efficient.
No boundary conditions specified or needed for um.
Assumes um is a solution of the elasticity equation.
Accuracy limited by least accurate displacement
component.
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Iterative/Optimization Solution Strategies

Given um(x) = measured displacement field ∀x ∈ Ω.
Iterative Inversion: Define u[µ] s.t.

−∇p +∇ · (µ∇u) +∇ · (µ∇u)T = 0 (40)
∇ · u = 0 (41)

+boundary conditions (42)

Find µ(x) to minimize:

Π[µ] = ‖u − um‖+ αR[µ] (43)

Remarks:
Flexible but computationally intensive.
Accommodates variety of corrupted data.
Accuracy limited by accuracy of boundary conditions.
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6 Some open questions & challenges in elasticity imaging
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Example: Phantom Images

Example: 5 mm Inclusion
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Resolution ExperimentRichards et al. 3D Elastic Modulus Imaging

19

Resolution Experiment

           Size:
Stiffness:

Large:
13 mm

Medium:
 8 mm 

Small:
 5 mm

Large:
3:1 Visible!

Medium:
2:1

Small:
1+:1 Invisible?
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Resolution Experiment

           Size:
Stiffness:

Large:
13 mm

Medium:
 8 mm 

Small:
 5 mm

Large:
3:1

Medium:
2:1

Small:
1+:1
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Results from Clinical Images6

(KU0031) Fibroadenoma (benign tumor):

(CC011) Invasive Ductal Carinoma (malignant tumor)

6w/ TJ Hall, U Wisc; AA Oberai, RPI
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Results from Clinical Images: IDC (CC193)

Ultrasound Image

Shear Modulus
Reconstruction
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Tumor heterogeneity hallmark of malignancy

Fibroadenoma
(benign tumor)

Invasive Ductal Carcinoma
(malignant tumor)
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Challenge 1: Discontinuous Material Properties

Adjoint weighted variational equation (plane stress).
Given A. Let V = {w ∈ H1(Ω)|

∫
wdΩ = 0}. Assume:

∇ · A ∈ L2(Ω)

∃C1and C2 s.t .

(w , (∇ · A)2w) ≤ C1(∇w ,A2∇w) ≤ C2‖w‖21 (44)

Define: b(w , µ) =
(
A∇w ,∇ · (Aµ)

)
µ = µ̃+ µo.

AWE: Find µ̃ ∈ V s.t.

b(w , µ) = 0 ∀w ∈ V (45)
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Challenge 1: Discontinuous Material Properties

Remarks:
AWE (45) is well-posed.
b(·, ·) is coercive on V.
From coercivity, comes:

1 Uniqueness & existence (Lax-Milgram).
2 Equivalence to strong form.
3 Convergence with Galerkin discretization.
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Challenge 1: Discontinuous Material Properties
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Challenge 1: Discontinuous Material Properties

Remarks:
1 Strong (exact) solution, AWE formulation, and least

squares all require u ∈ H2, or smoother.
2 All methods give µ ∈ H1 or smoother.
3 Can we obtain a direct formulation that allows u ∈ H1,
µ ∈ L1, consistent with the forward problem?
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Challenge 2: Discontinuous Material Properties

Optimization formulation of inverse problem.

L[u,λ, µ] =
1
2
‖u − um‖2N + a1(λ,u;µ) (46)

a1(λ,u;µ) =
(
λ,∇ · (µA)

)
(47)

S = {u ∈ Hs(Ω) | u = um on Γ} (48)
V = {v ∈ Hs(Ω) | v = 0 on Γ} (49)

P = {λ ∈ H l(Ω) | λ = 0 on Γ} (50)

A = {µ ∈ Hm(Ω) |
∫

Ω
µdΩ = µ} (51)

B = {γ ∈ Hm(Ω) |
∫

Ω
γ dΩ = 0} (52)
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Challenge 2: Discontinuous Material Properties

Remarks:
1 Forward problem well defined for µ ∈ L1, u ∈ H1.
2 Can prove optimization problem well posed for u ∈ H2

and µ ∈ H1.
3 Can we prove the optimization formulation is

well-posed for u ∈ H1, µ ∈ L1, consistent with the
forward problem?

4 What are the weakest spaces where we can pose this
problem?
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Challenge 2: Discontinuous Material Properties
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1 Forward problem well defined for µ ∈ L1, u ∈ H1.
2 Can prove optimization problem well posed for u ∈ H2

and µ ∈ H1.
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well-posed for u ∈ H1, µ ∈ L1, consistent with the
forward problem?
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Challenge 3: New Forward FEM formulations

Consider optimization formulation of inverse problem.

L[u,λ, µ] =
1
2
‖u − um‖21 + a1(λ,u;µ) (53)

a1(λ,u;µ) =
(
λ,∇ · (µA)

)
(54)

Discretize by standard FEM
uh bilinear interpolation over element.
µh constant over each element.

“Measure" um
x = y consistent with µ = const.

Solve by Newton iterations.
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Challenge 3: New Forward FEM formulations

µ distribution
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Reconstructed µ

Noiseless data.
Both data and modulus
solution are exactly
representable on mesh.
Elasticity equations
reduce to:

∂xµ = 0 ; ∂yµ = 0 (55)
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Challenge 3: New Forward FEM formulations

Remarks:
1 Exact (strong) solution is µ = constant.
2 Checkerboard exactly satisfies FEM equations at

u = um.
3 Checkerboard violates strong elasticity equations.
4 Strong elasticity eqn has enough information to

determine µ.
5 Discrete (weak) eqn does not!
6 New discretization of forward problem needed to

adequately enforce physical constraints.
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Challenge 4: Multiple Data Sets

Multiple datasets stabilizes inverse problem, reduces
ambiguity. Given um

j , j = 1, . . . ,Nmeas, measured
displacement fields.

AWE or LS formulation:

b(w , µ) =
Nmeas∑
j=1

bj(w , µ) = 0 ∀w ∈ V (56)

Optimization formulation:

Π[µ] =
Nmeas∑
j=1

‖u − um
j ‖2N (57)
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Challenge 4: Multiple Data Sets

Open questions:
1 For plane strain and 3D, multiple deformations required

for uniqueness. How “different" must they be?
2 Uniqueness for plane strain assumes distinct

characteristics. What if they are the same?
3 Appropriate scaling and “orthogonalization” of data?



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Challenge 4: Multiple Data Sets

Open questions:
1 For plane strain and 3D, multiple deformations required

for uniqueness. How “different" must they be?
2 Uniqueness for plane strain assumes distinct

characteristics. What if they are the same?
3 Appropriate scaling and “orthogonalization” of data?



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Challenge 4: Multiple Data Sets

Open questions:
1 For plane strain and 3D, multiple deformations required

for uniqueness. How “different" must they be?
2 Uniqueness for plane strain assumes distinct

characteristics. What if they are the same?
3 Appropriate scaling and “orthogonalization” of data?



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Challenge 4: Multiple Data Sets

Linearity of forward problem:
If um

1 and um
2 are solutions of the forward problem, then

um
α = αum

1 + (1− α)um
2 (58)

um
β = βum

1 + (1− β)um
2 (59)

are valid data sets.

Conditioning, and hence solution, of the inverse
problem depends upon choice of α and β.
α and β probably ought to be selected so that um

α and
um

β are orthonormal in some sense.
What sense?
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Challenge 5: Single (accurate) displacement
component

Ultrasound (currently) provides accurate measurement of
“axial” component of u, but relatively noisy estimate of
orthogonal components.
Questions & Opportunities:

1 What are the implications for uniqueness?
2 Plane stress: Solvability condition gives nonlinear pde

coupling ux to uy :

∇× [A−1∇ · A] = 0. (60)

3 Plane strain: Incompressibility condition gives linear
pde coupling ux to uy :

∇ · u = 0. (61)
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Challenge 6: 3D effects in 2D reconstructions

Quantitative 3D elasticity imaging 15
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Figure 6. (a) Example x-y slice of modulus reconstruction using 3D reconstruction
and all 3 vector components. (b) 2D modulus reconstruction using the center slice of
simulated 3D displacement data and a plane strain reconstruction. (c) 2D modulus
reconstruction using the center slice of simulated 3D displacement data and a plane
stress reconstruction. (d) Center axial line of all three modulus reconstructions in
addition to the original modulus distribution used to create the displacements.

the gelatin properties and the difference in the tests themselves. For instance, the small

size of the calibration samples could result in a higher temperature variation across the

samples. In addition, the larger length of the imaging experiment and the relatively

large size of the phantoms could result, at least to some degree, to a larger temperature

variation within the phantom volume, as well as some possible water loss within the

phantom, during testing. The effect of the latter would be to stiffen the phantom non-

uniformly, beginning with the exposed surfaces of the phantom (not the reconstructed

surface). The temperature variation, resulting from both the length of the exam and

the US image heating, would effectively soften the phantom non-uniformly. Although

it is assumed in this work that these effects are minimal, they cannot be ignored. Some

evidence of this apparent variability in the reported values can be seen in the lower

contrast inclusions. In addition to the reported calibration contrasts, we also provide

comparisons of the imaged inclusion volumes with a priori expectations of the inclusion

volumes based on the mould sizes. The size of the mould and hence the inclusion in

the lateral and elevational directions is measured with good accuracy. However, there is

some uncertainity in the size of the inclusion in the axial direction due to the variability

in an individual gelatin pour. In addition, flushing of each layer with warm water prior to

pouring additional gelatin layers may have acted to blur the expected boundary between

background modulus and inclusion. The expected volumes are compared to the volumes

of the inclusions in the reconstructed images, chosen some what arbitrarily to be the

volume with modulus values greater than half the maximum within the reconstructed

inclusion. Despite the variability of our benchmarks, we believe that the contrasts and

volumes reported here are still valuable in evaluating the reconstruction results and

the feasibility of the employed methods. Indeed one may suggest that more accurate

and exhaustive method to evaluate the reconstruction techniques would be to have a

very controlled experimental setup, in both temperature and time for both imaging and
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Challenge 7: Three-dimensional uniqueness

Eliminate pressure from momentum equation:

2∇× [∇ · (µε)] = ρ∂tt∇× u (62)

Questions:
1 Eqn (62) is “hyper-hyperbolic". What are its solution

properties? What data does it require?
2 Given two sufficiently smooth measurements (i.e.

equation coefficients ε(x)), what is the dimension of the
solution space?
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Challenge 7: Three-dimensional uniqueness

Example - Uniform Strain:

ux = ε1x (63)
uy = ε2y (64)
uz = ε3z (65)

with:

ε1 + ε2 + ε3 = 0, (66)
ε1 6= ε2 6= ε3 6= ε1. (67)

Then:
µ(x , y , z) = f (x) + g(y) + h(z). (68)

Structure similar to plane strain
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Challenge 8: Anisotropy7
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Improve understanding of osteoporosis.
Image with µCT.
Reconstruct distribution of aniostropic mat’l props.

7E.F. Morgan, unpub 2007



Inverse
Elasticity

Barbone

Background
Measuring interior
displacement data

Fwd Model

Inv Problem

Plane Stress
Forward Model

Inversion

Plane Strain
Forward Model

Inversion

Examples

Wish list

Summary

Further
Reading

Challenge 8: Anisotropy8
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Loading along 3 orthogonal axes are insensitive to C55.
What loadings give unique reconstruction?

8A.A. Oberai & E.F. Morgan, unpub 2007
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Biomechanical Imaging Summary

Nice inverse problems with lots of applications.
Pressure field due to incompressibility introduces
ambiguity. Not to be neglected!
Strain imaging and plane stress: enough “extra
information” in the assumed model.
Plane strain and 3D: need additional information.
Open problems with elasticity imaging:

Discontinuous material properties: uniqueness;
well-posedness.
Forward solutions!
Balancing multiple datasets.
Nearly everything about 3D.
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Biomechanical Imaging Summary

Broader outlook:
Linear shear stiffness.
Nonlinear stiffness.
Anisotropy.
Viscosity.
Hysteresis.
Compressibility (for f < 0.1Hz).
Porosity & Permeability.
Slip boundaries & friction on fascia.
& c.

There remains lots of math and engineering to be done.
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