
Callback Design Pattern 1 

The Callback Design Pattern 
Aaron Stevens (azs@bu.edu) 
 
Introduction/Motivation 
 
A single GUI window application is straightforward enough, but any “real world” 
application will likely involve multiple GUI windows. The challenge of a multiple-window 
application is to enable the windows to communicate with each other. This is done via 
methods, and I call this the callback pattern.  
 
The Cast 
 
We can think of any multiple GUI window application as a play between windows, where 
one is the “master” – the main window which is shown at start up time when you run the 
application – and all the others are “slaves” – child windows which are shown and 
hidden based on a command from the “master.” (Of course, any “slave” window can be 
a “master” to its own “slaves”, so the pattern is repeatable infinitely.) 
 
General Approach 
 
All windows in a GUI application are created (at design time) as classes, and thus at run 
time each window is an instance of its class, or an object. Now that we can think of each 
window as an object, we can think about how objects interact – via method calls.  
 
The general approach to inter-window communication is to have each window (object) 
export (provide) public methods which can be called its partner (e.g. the “master” can 
call the “slave’s” public method(s), and the “slave” can call its “master’s” public methods.  
 
Recall that to call a method, the caller needs to have an object reference to the object 
which provides that method. Thus, the Master will have a reference to the Slave object, 
and the Slave will have a reference to the Master object.  
 



Callback Design Pattern 2 

An Example  
 
Consider two classes, Master and Slave. Here are some simple declarations for each: 
 
class Master 
{  
  // … hold a reference to the Slave window object 
  Slave slave; 
 
  public void sendMessage(String msg) 
  { 
 // … Master does something when message received 
  } 
} 

 
class Slave 
{  
  // … hold a reference to the Slave window object 
  Master master; 
 
  public void sendMessage(String msg) 
  { 
 // … Slave does something when message received 
  } 
} 

 
In your application, of course, both Master and Slave will be Jigloo-created 
windows, extending JFrame (master) and JDialog (slave). 
 
This example shows that the Master has a member variable which is a reference to the 
Slave, and vice-versa. When the Master needs to communicate to the Slave, it will 
make a method call like: 
 
public void someActionEventhandler(ActionEvent e) 
{ 
    String text = “some message”; 
    slave.sendMessage(text); 
} 

 
This works similarly in the other direction too. Of course, the methods are not limited to 
sending messages, but can be any type of method, especially accessor and mutators. 
 
 



Callback Design Pattern 3 

Initializing the Callback References 
 
The above model is helpful to understand basics of communications between the 
windows. However, the actual code you will write will need to account for one more 
thing: setting up the references between the objects. 
 
There are several approaches to setting up the references for objects to call back to 
each other, but the simplest approach is to use mutator methods. Consider the example 
code again, with these master/slave reference mutator methods: 
 
class Master 
{  
  // … hold a reference to the Slave window object 
  Slave slave; 
 
  public void setSlave(Slave slave) 
  { 
      this.slave = slave;    // store a reference to the slave object 
  } 
 
  public void sendMessage(String msg) 
  { 
 // … Master does something when message received 
  } 
} 

 
class Slave 
{  
  // … hold a reference to the Slave window object 
  Master master; 
 
  public void setMaster(Master master) 
  { 
      this.master = master; // store the reference to the master object 
      master.setSlave(this); // sets the Master’s slave ref. to current object 
  } 
 
  public void sendMessage(String msg) 
  { 
 // … Slave does something when message received 
  } 
} 

 
Note that the Slave’s setMaster method will call the Master back to set its Slave 
reference, so that both references will be set by the act of the Master calling the slave’s 
setMaster method once.  
 



Callback Design Pattern 4 

Now all we need is a way to “kick off” the process of setting these references. The best 
place to do this is where the Master window creates the Slave window the first time, 
e.g.: 
 
  public void btnPopUpChildWindowActionHandler(ActionEvent e) 
  { 
 // time to create and pop up the slave window: 
 Slave slaveWindow = new Slave(); 
  
 // set the call back references: 
 slaveWindow.setMaster(this); 
 
  } 

 
And that’s that. Once these callback references are set up, any communication between 
the windows is done by calling the public methods you write for this purpose. From a 
design perspective, it’s important to think carefully about a given method: which window 
should provide the method, and which window will call the method? 


