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Abstract

A formalism for two-photon Stokes parameters is introduced to describe the polarization entanglement of photon
pairs. This leads to the definition of a degree of two-photon polarization, which describes the extent to which the two
photons act as a pair and not as two independent photons. This pair-wise polarization is complementary to the degree
of polarization of the individual photons. The approach provided here has a number of advantages over the density
matrix formalism: it allows the one- and two-photon features of the state to be separated and offers a visualization of
the mixedness of the state of polarization. © 2002 Elsevier Science B.V. All rights reserved.

PACS: 42.50.Dv; 03.65.Ud; 03.67.—a

1. Introduction

In his paper of 1852 [1], G.G. Stokes studied the
properties of beams of light in an arbitrary state of
polarization and devised four parameters, known
since as the Stokes parameters [2], which com-
pletely specify the polarization properties of a
beam of light. The Stokes parameters have been an
essential element in the development of various
metrological techniques that involve the use of
polarized light. These parameters have recently
been extended to the quantum domain [3].
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The development of new nonclassical sources of
light exhibiting polarization entanglement de-
mands that the Stokes parameters be further ex-
tended. In this paper we introduce a generalization
of the Stokes parameters to two-photon sources,
referred to hereinafter as 2P-SP. Although the
density matrix provides a complete description of
the state, the formalism presented here is advan-
tageous for characterizing the unusual properties
of such sources from conceptual and computa-
tional points of view. The properties of the two
photons as individuals, versus their properties as a
pair, can be more readily distinguished in the
proposed formalism.

Consider a source emitting two photons, as
shown in Fig. 1. The implementation of such a
source is readily achieved via spontaneous para-
metric down-conversion in a second-order

0030-4018/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0030-4018(01)01645-5



94 A.F. Abouraddy et al. | Optics Communications 201 (2002) 93-98

MIZ

Fig. 1. Two-photon polarization state analyzer. S is a two-
photon source, 4, and A4, are polarization analyzers, and D,
and D, are one-photon detectors. M; and M, are singles mea-
surements while M), is the coincidence measurement.

nonlinear crystal pumped by a laser beam [4]. Such
sources have become an essential ingredient in
many experimental realizations of the new field of
quantum information processing [5], and have also
been used in the emerging field of quantum me-
trology [6].

2. One-photon Stokes parameters

Of the many definitions of the Stokes param-
eters, the one that suits our purpose best is the
definition noted in the early days of quantum
mechanics [7], where the Stokes parameters,

S;, j=0,...,3, are the (real) coefficients of ex-
pansion of the 2 x 2 polarization density matrix
p, in terms of the Pauli matrices a;, j=0,...,3
(8]
P

=5 ZS/Gi? S; = Tr(aip,),

/=0 (1)
S() = Tr(pl) =1.

The state of polarization of a one-photon
source can also be described by the Stokes pa-
rameters, referred to hereafter by 1P-SP. One can
use the 1P-SP to distinguish between two classes of
such sources, pure- and mixed-state beams, via one
number that is a function of the 1P-SP, namely the
degree of polarization defined as P =
V/S?+ 82+ 57 [2]. A pure state of polarization
yields P, = 1. A maximally mixed (unpolarized)
state yields P, =0, so that the 1P-SP are {Il,
0,0,0}.

3. Two-photon Stokes parameters

For the case of a two-photon source we extend
the definition in Eq. (1), defining the 2P-SP as the
(real) coefficients of expansion of the 4 x 4 polar-
ization density matrix p,, of the photon pair in
terms of two-photon Pauli matrices, 6;; = 6; ® 6,
i,j=0,...,3

= 6, Sy =Tr(e;py),
41.]4:0 J ( ] 12) (2)

Soo = Tr(pyy) = 1.

We now have a set of 16 2P-SP [9]. The 16 two-
photon Pauli matrices are linearly independent
and can be used as a basis for the linear vector
space of 4 x 4 matrices defined over the field of
complex numbers.

An important feature of the definition of the
2P-SP is that the 1P-SP for each photon are in-
cluded within them as a subset. The reduced den-
sity matrix of the first photon (after tracing over
the subspace of the other photon in p,,) is

_ [ P11 TP Pl3+Pz4) 3
P (PT,% + 0% PxtPu) ®)

where the elements indicated are those associated
with p,,, so that the 1P-SP are

So P11t Pt P33t Pag Soo
S, = Si| _ | PutPn =P —Pu| _ | So

Sz 2Rep13 + 2Rep24 S20 ’

A} 2Imp,; 4 2Imp,, S30

(4)
and similarly for S,. All the 2P-SP with 0 in their

index thus represent the 1P-SP for the two photons
separately.

4. Measurement of the two-photon Stokes param-
eters

The question arises of how to measure the 2P-
SP. Referring to the configuration illustrated in
Fig. 1, polarization measurements may be carried
out on each beam separately (singles measure-
ments), or carried out simultaneously on the two
beams (coincidence measurements). In general it is
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not possible to characterize the state of polariza-
tion by single measurements alone, since the state
may be entangled [10]. There are many schemes for
performing such measurements [11], one of which
relies on carrying out only coincidence measure-
ments with various polarization analyzers placed
in the two beams. An example of a set of 16 suf-
ficient coincidence measurements is provided by

-®—,—-8,/,200,-Q0,,/ ®—,
SR,/ 00,/ Q0,0 ®—,
OR /0L RU,LU U,V R,
0OR,/,0 Q0,0 0,

where — and " are horizontal and 45° linear
polarization analyzers (with respect to some cho-
sen direction), respectively; and & and ) are right-
hand and left-hand circular polarization analyzers,
respectively. Each analyzer may be expressed in
terms of Pauli matrices as follows:

—= l(0'0—1'0'1) /= l(0'0—1'0'2)

O= (O'()—O'z) = (0'0+O'3)

and the proposed set of measurements may thus be
represented by the two-photon Pauli matrices
mentioned earlier; for example,

- —= }1(0'00 + 601 + 610 + 011).

The results yield linear combinations of the 2P-SP
and may then be inverted. Note that the required
measurements are 16, one of which is needed for
normalization.

5. Degree of two-photon polarization

As noted earlier, the degree of polarization
distinguishes between pure- and mixed-state
beams. A pure state is characterized by P, = 1. In
defining a measure of the degree of two-photon
polarization we are faced with additional possi-
bilities for the state: a pure state may further be
entangled or factorizable [12]. The structural form
of the 2P-SP reveals information about the en-
tanglement of the state. We examine the case of
pure two-photon polarization states in this section

and study the case of mixed states in the next
section.

If the state is factorizable and pure, i.e. the
two-photons are independent, then the 2P-SP
themselves are factorizable into the product of
1P-SP, one for each photon, so that S;; = S;S;.
In other words all the two-photon Stokes pa-
rameters can be determined through local mea-
surements, measurements that are performed on
each beam separately. It is easy to show that this
always results in the following distribution of
values for the 2P-SP:

isgj:l, 2530:1 252—1 (5)
j=1 i=

The case of the maximally entangled pure two-
photon state [13] leads to

Sor = So2 = So3 = 05

ZS2 =3, ©)

so that each beam, considered separately from the
other, is unpolarized, whereas coincidence mea-
surements yield information about the other 2P-SP
that describe non-local correlations.

This leads us to a measure of the degree to
which the two photons act as a pair and not as two
independent photons. We call this the degree of
two-photon polarization Pp. This measure coin-
cides with the degree of entanglement defined pre-
viously [13], which was arrived at via a different
rationale. The quantity P, is then given in terms of
the 2P-SP by

1%_—<§:§—1>
1 2 - 2
:1—§<;Si0+;sm>. (7)

For the pure state it is clear that this quantity
ranges from 1 (maximally entangled state) to 0
(factorizable state). The (one-photon) degree of
polarization, for each photon separately, is
Pr= /iy + 5% + 835 and Py = \/S§ + 55, + S5
One can show that for pure states, P, is always
equal to P,. We note here that there exists

S0 = 82 = 83 = 0;
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a complementarity relationship between P, and P;,
namely, P}, + P’ =1, j=1,2 [14]. Since 0< A,
P, <1, one may then conclude that 0 < P, < 1.

6. Mixed states

The 2P-SP formalism facilitates the study of
mixed states as well. We parameterize each state
by its degree of two-photon polarization P, and
the average one-photon degree of polarization
P> = (P +P2)/2 (in general, P, # P, for mixed
states). There are general constraints on the range
of values assumed by P, and P for any state. We
plot an outer contour of the possible values of P,
and P in Fig. 2. The axes are chosen to be P}, and
P? for reasons that will become clear shortly. In
the case of mixed states one can have negative
values of P2 according to the definition in Eq. (7).
For such a case (P, < 0) we define a new param-
eter P, defined as

1 3
2 2
Pm_§<1_2Sij>? (8)
ij=

such that both P}, and P2 are always > 0.

Pure states satisfy the complementarity rela-
tionship P + P> =1 so that they are represented
by points lying along the straight-line segment AB
in Fig. 2, where 4 = (P, =0,P*=1) and B =
(P, = 1,P* =0) represent the factorizable and
maximally entangled states, respectively. All other
points enclosed in the polygon, and on the

132
lg A
E 0.5+
2 2
Pm D C . B P12
0.5 0 0.5 1

Fig. 2. A plot of the possible values for P, P2, and P*.

boundaries other than 4B in Fig. 2 represent mixed
states for which P% + P? < 1.

As an example of a mixed state consider the
density matrix

1 -7
(=2

Plzzi|lp><lp|+ 4

%)
which represents the mixture of a pure state |¥)
(which lies on 4B), and a maximally mixed state
represented by the 4 x 4 identity matrix I, with
0 < 2 < 1[15]. Varying the weight / from 1 to 0
moves the point representing the state along a
straight line from its location on the pure state
locus 4B (A=1) to the point D= (P> =0.5,
P> =0), which corresponds to the maximally
mixed state (4 = 0). For a maximally mixed state
all the 2P-SP are equal to zero except Spo = 1.

As a second example of a mixed state consider a
mixture of two factorizable pure states

pi2 = AP O)(P |+ (1 = H[P2) (P, (10)

where |¥)) = |V4) @ |¥P5) and | V1) = |Pc)® |Ph);
here |¥,), |¥s), |Pc), and |¥Pp) are one-photon
pure states. The shaded area in Fig. 2 represents all
the possible states formed by Eq. (10). As more
factorizable states are mixed, the shaded area ex-
tends toward D. The straight-line segment AE
represents the mixture in Eq. (10) when |¥,) =
|Pc) and |Wp) is orthogonal to |¥p). Point 4
represents the cases A=0 and 1= 1, whereas
point £ = (P> = 0.5, P* = 0.5) represents 4 = 0.5,
where we have p;, = |¥,)(¥,| ® iL,. If we further
mix this state with p;, = [¥p)(¥e| ® i, where
|,4) and the one-photon pure state |¥g) are or-
thogonal, then the locus of the mixture is the
straight-line segment DE, where the point D is the
case of an equally weighted mixture. The point C
in the diagram of Fig. 2 represents classically
correlated states (P, = P, = 0 = P;). The meaning
of negative P}, and thus the definition of P2, now
becomes clear: all mixtures of factorizable states lie
to the left of the straight-line segment AC. Al-
though these states are not directly factorizable in
the form p,, = p; ® p, (except those lying on the
outer border along the segments AE and DE) they
are separable in the sense discussed in [16]. Their
apparent nonfactorizability is due to the mixed-
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ness of the state and not from entanglement. The
quantity P} is defined in Eq. (7) so as to yield
negative values for such cases (one may think of
nonfactorizability due to mixedness versus entan-
glement).

7. Discussion

We have presented a formalism for describing
the polarization properties of two-photon states
that is an extension of the Stokes-parameters
formalism that is well known in classical optics.
In contrast to the density-matrix formalism, this
extended formalism clearly separates the one- and
two-photon characteristics of the state. More-
over, it is useful for visualizing the effect of
mixedness on the one- and two-photon charac-
teristics of the state and could serve as a valuable
tool for comparing the merits of various purifi-
cation and concentration protocols that are of
current interest in quantum information process-
ing [17].
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