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Quantum simulation of discrete-time Hamiltonians using directionally unbiased
linear optical multiports
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Recently, a generalization of the standard optical multiport was proposed [Phys. Rev. A 93, 043845 (2016)].
These directionally unbiased multiports allow photons to reverse direction and exit backwards from the input
port, providing a realistic linear optical scattering vertex for quantum walks on arbitrary graph structures. Here,
it is shown that arrays of these multiports allow the simulation of a range of discrete-time Hamiltonian systems.
Examples are described, including a case where both spatial and internal degrees of freedom are simulated.
Because input ports also double as output ports, there is substantial savings of resources compared to feed-forward
networks carrying out the same functions. The simulation is implemented in a scalable manner using only linear
optics, and can be generalized to higher dimensional systems in a straightforward fashion, thus offering a concrete
experimentally achievable implementation of graphical models of discrete-time quantum systems.
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I. INTRODUCTION

Quantum computers have been shown to be capable of
performing certain kinds of tasks exponentially faster than
classical computers. As a result, an enormous amount of effort
has gone into their development. Although advances have
been made, the ultimate goal of a large-scale programmable,
general-purpose quantum computer still seems to be a rel-
atively long way off. Therefore it is useful to consider the
more easily attainable possibility of special-purpose quantum
computers designed to carry out specific tasks. In particular,
one might consider returning to Feynman’s original motivation
for discussing quantum computers [1]: using simple quantum
systems to simulate the behavior of other physical systems.

A number of such quantum simulators appear in the
literature; reviews may be found in [2,3]. Here we present a
new and relatively simple approach to creating a particular
type of quantum simulator using only linear optics. We
illustrate the method via the simulation of Hamiltonians for
one-dimensional discrete-time physical models. Such models
could represent, for example, the dynamics of spin chains or of
electrons hopping along one-dimensional polymers. The basic
approach can be easily generalized to higher dimensions.

The method presented here implements the simulation
optically by using chains of simple linear optical units. These
basic units are the directionally unbiased optical multiports
proposed in [4]. These devices are essentially generalized
beam splitters, but they differ from the usual beam splitter
in two main respects: (i) they can have any number of input
and output ports, and (ii) the photons can reverse direction
inside, allowing them to exit back out the initial input port.
These directionally unbiased multiports can be thought of
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as scattering centers that allow physical implementation of
optical quantum walks on graphs [5–8]. (A different approach
to scattering-based walks has also been taken in [9].) In a
graph model, an incident photon is constrained at each time
step to scatter into one of a finite number of modes, one of
which is the time-reversed version of the input mode. In [4],
several applications of these multiports were demonstrated,
including their use as quantum gates for qubits consisting
of either single photons or of entangled photon pairs. Here,
we show that they may also be used to implement quantum
simulators for Hamiltonians that can exhibit a wide range of
behaviors.

In the following sections, we first review unbiased multi-
ports and discrete-time Hamiltonian systems, then give two
examples of one-dimensional Hamiltonian systems whose
dynamics can be simulated by quantum walks on sequences of
directionally unbiased three-ports. In each of these cases the
same three-port devices are used, but different Hamiltonians
are implemented simply by linking them in different manners.
There are a number of obvious generalizations that can be
made, such as using n-ports with n > 3, of allowing the
properties of the n-ports to vary with position, or of connecting
the n-ports into two- and three-dimensional networks. But
even in the simple cases considered here (one-dimensional
three-port chains with all of the three-ports having identical
parameters), an array of different physical system behaviors
can already be seen to occur. The examples discussed show
that systems with both spatial and internal degrees of freedom
can be simulated, and it is clear that, by means of multiports
with large n, high-dimensional systems can be implemented
in a straightforward manner by simply extrapolating the same
methods. Since there is no impediment to putting each linear
optical multiport on a chip for high stability, the approach is
highly scalable.

In addition to the topologically trivial examples discussed
in the current paper, it will be shown elsewhere [10] that a
different arrangement of the same multiports can simulate
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FIG. 1. (a) The beam splitter is a four-port device. Initially, all
four ports are symmetric. (b) But when a photon is input to one port
the symmetry is broken: the photon can exit from ports 3 and 4,
but not 1 or 2. The fact that the photon cannot reverse direction and
exit out input port 1 is referred to by saying that the beam splitter is
directionally biased: the presence of the photon in one port biases the
output toward two of the four possible output directions.

physical systems that support states with nonzero winding
number and topologically protected boundary states.

II. DIRECTIONALLY UNBIASED MULTIPORTS

A. Directionally unbiased multiports and photon reversibility

An ordinary beam splitter or its standard multiport gener-
alization is, in a certain sense, a one-way device. Although all
four ports of a beam splitter are initially on an equal footing,
once a photon enters one port (say port 1 of Fig. 1), then it
can exit only from ports 3 or 4, not from 1 or 2. However it
is possible to construct a multiport system, with any number
n of ports, such that a photon entering any port can leave any
port. In particular, the photon may exit back out the initial
input port. Such a multiport, which allows the light to reverse
direction, is referred to as directionally unbiased.

Examples of unbiased n-ports for n = 3 and n = 4 are
shown in Figs. 2(a) and 2(b). As in [4], the focus here will
be on the three-port device. The cases of higher n are similar.
The key to constructing such directionally unbiased multiports
using only linear optics is to build them from vertex units of
the form shown in Fig. 2(c). Each unit is at one port of an
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FIG. 2. (a) The directionally unbiased three-port. (b) The direc-
tionally unbiased four-port. The rectangles after the beam splitters in
(a) and (b) represent the vertex unit shown in (c); this unit consists of
a mirror and a phase shifter. The distance between each beam splitter
and the adjacent mirror unit is half the distance d between one beam
splitter and the next.

ordinary beam splitter, and is constructed from a mirror and
a phase shifter. At each beam splitter, one port is used for
input and output to the device, and two ports feed into the
interior of the multiport. The remaining beam splitter port
reflects back on itself via the mirror inside the vertex unit.
The beam splitter-to-mirror distance d

2 is half of the distance
d between the vertex units in the multiport. The internal phase
shifter provides control of the properties of the multiport, since
different choices of phase shift at the vertices affect how the
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different photon paths through the device interfere with each
other.

Given any input and any output port, there will be multiple
paths joining them, and these paths will have different lengths.
Therefore, for any input there will be transient states within
the device that will decay over time as longer paths exit the
multiport. Because of this range of exit times, there will be a
lengthening of input pulses, and a gradual loss of coherence.
These effects may be minimized by taking the physical size of
the multiports small enough compared to the distances between
them, and by taking the pulses to be sufficiently short compared
to the other time scales in the system. Quantitative estimates of
the sizes and time scales required may be found in [4]; here we
simply assume that the multiport is small enough to be treated
as coherent and point-like. In that case, the three-port takes an
input state |ψ0〉 to an output state |ψ〉 = U |ψ0〉, where

U = − i

3

⎛
⎝ 1 −2 −2

−2 1 −2
−2 −2 1

⎞
⎠. (1)

Here the rows and columns refer to the three ports A, B,
C. This matrix reproduces the scattering amplitudes of the
diamond-shaped graph used as an example in [6,7].

For an arbitrary n-port with the same choice of vertex
phases, the matrix of Eq. (1) generalizes to

Un = − i

n

⎛
⎜⎜⎝

n − 2 −2 −2 . . .

−2 n − 2 −2
−2 −2 n − 2

...
. . .

⎞
⎟⎟⎠. (2)

Note that this is the form of an n-dimensional Grover coin [11],
and so provides a physical implementation of the Grover coin
for quantum walks in any number of dimensions. The behavior
of this matrix versus n should also be noted: for n = 3 the exit
probability is lowest at the input port. For n = 4, the exit
probabilities at all four ports are equal, while for n > 4 the
exit probability becomes highest at the input port. As n → ∞
the multiport acts effectively as a mirror, with the probability
of exiting back out the input port going to 100%.

B. Strictly unbiased multiports with equal probabilities

For the choice of vertex phases given above, it is clear that
the exit probability at the input port differs in general from the
probabilities to exit at the other two ports. In the three-port
case, for example, input at exit A leads to exit probabilities
PA = 1

9 and PB = PC = 4
9 . The term “directionally unbiased”

here refers to the fact that both forward and backward
are possible, not necessarily that all exit probabilities are
equal. However, for some values of phases the multiports are
unbiased in the stricter sense of having equal exit probabilities
at all ports. As can be seen from Eq. (2), this is already true
for the four port with the choice of phases used here: the exit
amplitudes at all four ports are the same, up to a minus sign.

The same equality of exit probabilities can also be achieved
for the three-port by appropriate choices of vertex phases;
for example, for φA = φB = φC = π

6 all three ports have exit

probability 1
3 , with transition matrix

U = 1√
3

e
2πi

3

⎛
⎜⎝e

−2πi
3 1 1

1 e
−2πi

3 1
1 1 e

−2πi
3

⎞
⎟⎠. (3)

Such cases where the exit probabilities are all equal will be
referred to as strictly unbiased. The strictly unbiased multiport
is useful for some applications, such as the conversion of
position eigenstates into momentum eigenstates (see Sec.
IV D) or for quantum state discrimination methods (to be
discussed elsewhere).

In the remainder of the paper we will not require this
strict unbiasedness. We will instead follow the example of
[4], focusing on the special case of the three-port with equal
phases of φ = − 3π

4 , leading to the transition matrix of Eq.
(1). This choice is convenient for quantum walk applications
because all of the transition amplitudes have the same phase
(up to minus signs), reducing the number of phase factors that
have to be tracked and eliminating complicated interference
terms.

III. DISCRETE-TIME HAMILTONIANS

In a discrete-time system, the Hamiltonian is obtained
from a discrete-time evolution matrix U that takes the system
forward one time step. So if the initial state is |ψ(0)〉 and the
unit time step is T , then the state at time nT is

|ψ(nT )〉 = Un|ψ(0)〉. (4)

The evolution operator can then be written (for h̄ = 1)
in the form U = e−iĤT , which defines the discrete-time
Hamiltonian, Ĥ . The Hamiltonian generates time evolution,
and the matrix elements of U give the transition amplitudes
per time step between the states of the system.

If the system is spatially periodic, then Bloch’s theorem
says that the solutions should be of the form

ψ(x) ∼ u(x)eikx, (5)

where u(x) is a periodic solution and x is the spatial position.
The period of u(x) is the same as that of the underlying
system. The phase factor eikx defines the crystal momentum
or quasimomentum k, which describes how fast the phase
accumulates as you move along the periodic lattice. Because of
this phase factor, the periodicity of ψ(x) is not necessarily the
same as the periodicity of the lattice. In addition, a quasienergy
E can then be defined, which will be possibly multivalued
function of k. Each steady state of the system is characterized
by a fixed value of k and E.

The role of position in the following will be taken by the
dimensionless integer m that labels the lattice sites, where
each lattice site consists of some combination of unbiased
multiports. Because the position is given by a dimensionless
variable, the quasimomentum will also be dimensionless. A
single Brillouin zone runs from 0 to 2π , and k is only conserved
modulo 2π .

The Hamiltonian generates time evolution in some space
that may include both spatial and internal degrees of freedom.
As the momentum is varied over the width of a full Brillouin
zone, the Hamiltonian will trace out a closed path in this
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internal space. There may be topological obstructions that
prevent some of these paths from being contracted to a
point or from being deformed continuously into each other
as the system parameters are varied. When such obstructions
exist, then the paths fall into different topological classes,
categorized by the values of topologically invariant quantities
such as the winding number in one-dimensional lattice systems
or the Chern number in two-dimensional systems. When
two systems with different topological invariants are brought
into contact, consistency between the solutions in the two
subsystems requires that the band gap between quasi-energy
levels vanish at the boundary. The closing of the gap allows
states to change winding number, and implies the existence
of states that are exponentially localized in the vicinity of the
boundary [12,13]. In this paper we restrict ourselves to states
with vanishing winding number; the extension to systems with
nontrivial topological aspects will be examined elsewhere.
Reviews of topological insulators and related ideas may be
found in [13,14].

If the Hamiltonian describes internal as well as spatial
degrees of freedom, then it is convenient to write it as a
position-dependent matrix in the space of internal variables.
For example, if the internal space is two-dimensional, as is
the case for electron spins or photon polarizations, then the
Hamiltonian will generically be of the form

Ĥ (k) = d0(k)I + dx(k)σx + dy(k)σy + dz(k)σz (6)

= d0(k)I + d(k) · σ , (7)

where the dj (x) are real functions. The Pauli matrices appear
are the generators of su(2), the Lie algebra of traceless
2 × 2 unitary matrices. Any 2 × 2 unitary matrix, such as the
matrices representing single qubit quantum gates, can be built
from a superposition of these matrices and the identity, so the
Hamiltonian describing the dynamics of the two-dimensional
internal space will be formed from them. Similarly, in the
example to be discussed in Sec. V, the Hamiltonian may be
expressed as a matrix in a three-dimensional internal space,
analogous to the state space of a spin-1 particle or of a quark
in its three-dimensional color space. In this case, Ĥ can be
written in the form

Ĥ = d0I +
∑
j=18

dj�j = d0I + d · �, (8)

where the 3 × 3 Gell-Mann matrices �1, . . . ,�8, which are
widely used in elementary particle physics, form a basis for
the algebra of 3 × 3 traceless, unitary matrices, su(3). As k is
varied, the Hamiltonian will trace out a path in the resulting
space.

In the following sections we show that chains of direc-
tionally unbiased three-ports allow simulation of two different
Hamiltonians with very different characteristics. In Sec. IV a
system with a single three-valued degree of freedom will be
presented; these three values may be thought of as either three
positions on a periodic spatial lattice, or as three values of an
internal variable at a single, fixed spatial point. The second
example, in Sec. V, will allow simulation of both spatial and
internal degrees of freedom simultaneously.

IV. DYNAMICS ON A DISCRETE THREE-POINT
CONFIGURATION SPACE

A. A discrete-time system

Recall that the unbiased three-port is described by the
matrix U of Eq. (1), where the rows and columns refer to
the three ports A, B, C. For convenience in what follows, let
us instead label the three ports by numbers (modulo 3) instead
of letters:

A = 1 (mod 3), B = 2 (mod 3), C = 3 (mod 3).

The three input and output ports are now thought of as discrete
points on a circle; with each passage through a multiport,
photons hop among these points. U has three eigenstates, given
(up to an arbitrary overall phase) by

|ψ1〉 = 1√
3

⎛
⎝1

1
1

⎞
⎠, |ψ2〉 = 1√

2

⎛
⎝−1

0
1

⎞
⎠, (9)

|ψ3〉 = 1√
2

⎛
⎝−1

1
0

⎞
⎠, (10)

with respective eigenvalues

λ1 = +i, λ2 = λ3 = −i. (11)

Now suppose a sequence of three-port units are connected
as shown in Fig. 3(a). Each output of one multiport feeds
directly as input to the next. It can be arranged (for example
by means of optical circulators) so that the photons always
travel from left to right and do not reflect backward. In other
words, the spatial location increases monotonically and plays
the role of time. It is assumed that the multiports are very
small compared to the length of the lines joining them, so
that the time spent inside the multiport can be taken to be
negligible. If photons are fed in from the left, they can be
thought of as experiencing a periodic potential, as in the lattice
of a one-dimensional solid or a one-dimensional polymer. Each
multiport is viewed as the site of an “interaction,” where the
state of the photon can change. Over n time steps the unitary
transition matrix U is simply applied n times.

B. Position-space Hamiltonian

Given that U is known, the Hermitian Hamiltonian operator
Ĥ , is easily found:

Ĥ = +i ln U = π

6

⎛
⎝ 1 −2 −2

−2 1 −2
−2 −2 1

⎞
⎠ = i

π

2
U. (12)

Here, the discrete unit of time is taken as the time to go from
one multiport to the next; in other words, units are chosen so
that T = 1. For this system Ĥ turns out to be proportional to
U itself, so the eigenstates are those given in Eq. (11), with
corresponding energy eigenvalues

E1 = −π

2
, E2 = E3 = +π

2
. (13)

These eigenvalues can also be found by computing the
expectation value of the Hamiltonian in each of the three
eigenstates, Ej = 〈ψj |Ĥ |ψl〉 for j = 1,2,3. In terms of the
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FIG. 3. (a) A string of multiports connected sequentially, with
each output of one feeding directly into the input of the next. There
is a three-state quantum walk among the three lines as the photons
progress spatially from left to right. (For clarity, the figures are not
drawn to scale: the multiports should be very small compared to the
distances between them.) (b) State preparation occurs on the left and
photons are coupled into the system through the three input ports.
Detection occurs on the right, with a detector in each line. Depending
on the experiment being performed, the detectors may be connected
in coincidence.

position eigenstates |m〉, the Hamiltonian operator can be
written as

Ĥ = π

6

3∑
m=1

[|m〉〈m| − 2(|m + 1〉〈m| + |m〉〈m + 1|)]. (14)

Note that the eigenvalues of this Hamiltonian will not be
the photon energies h̄ν, but instead give the “quasienergies”
associated with the various wave solutions propagating in the
system. Higher quasienergy occurs for standing waves that
oscillate more rapidly in space.

In this Hamiltonian, the first term is an effective mass term,
giving the state a sort of “inertia” or probability of being at
the same point at successive times. It contributes a constant,
position-independent background energy π

6 . The other terms
serve as a nearest-neighbor interaction. This system can be
viewed in several different ways. It can be thought of as a
single three-state system, where the three links or positions
labeled by m correspond to the three states. Alternatively, this
may be seen as a coupled set of three two-level systems: each
of the three links can be in the ground state (no photon) or an
excited state (one photon).

C. Momentum-space Hamiltonian

The quasi-momentum eigenstates |k〉 are found by Fourier
transforming the position states |m〉:

|k〉 = 1√
3

3∑
m=1

eimk|m〉. (15)

In momentum space, the Hamiltonian has the form

Ĥ (k) = π

6

∑
k

[1 − 4 cos (k)] · |k〉〈k|. (16)

For a three-dimensional configuration space there will be
three-momentum eigenstates, with momenta kn = 2πn

3 for
n = 0, ± 1; these have the energies given above, and any other
state will be a superposition of them. When a single photon is
input into the system, the physical meaning of the momentum
eigenstates is easy to identify:

(1) There is a spatially uniform “rest” state with momen-
tum k = 0 and energy E1 = −π

2 . In this state, the photon
amplitude is evenly spread among the three ports. This state is
constant in time.

(2) There is a steady state with the average photon position
moving clockwise by one step per unit time, 	m = +1. This
state has momentum k = 2π

3 and energy E2 = +π
2 .

(3) The remaining steady state has the average photon
position moving counterclockwise by one step per unit time,
	m = −1. This state has momentum k = − 2π

3 and energy
E3 = +π

2 .
Because of the periodic nature of the configuration space,

these are the only possibilities with fixed k. For example, it can
be seen that the motion with 	m = −2 per step is the same
as that with 	m = +1 per step. All other periodic motions
around the triangle are therefore equivalent to one of the three
cases above.

In the preceding, m has represented a spatial degree of
freedom, but we may also think of it as simulating an
internal degree of freedom at a single point. As one possible
application of this approach, the three ports may be thought
of as representing the three spin states of a spin-1 particle.
Although the vertices of the multiports have been held at fixed
parameter values in this paper, the mirror reflectances and the
phase shifts added at each vertex can be changed, which allows
control over the interaction terms and hopping amplitudes;
this could for example lead to simulation of the behavior of a
spin 1 particle in a time-dependent potential. By replacing the
unbiased three-port with a larger n-port, the same procedure
can be used to model dynamics in an n-dimensional internal
configuration space at each lattice point, or in other words a
system of spin j , with 2j + 1 = n.

D. State preparation and measurement

The system of Fig. 3(a) simulates the time evolution and
the Hamiltonian. To complete the description of the system,
the initial state preparation and the measurement of the final
state must be included. As shown in 3(b), the input state is
introduced at left, the sequence of multiports simulates time
evolution as the photons move left to right, and measurements
are made at the final output ports on the right.
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To introduce an initial position state, |m〉, single photon
states are inserted at one of the left-hand input ports. High
quality approximations to single photon input states may be
achieved by means of highly attenuated laser coherent states
or via heralded parametric down conversion. The three inputs
may be populated randomly by a sequence of such states in
order to study the full dynamics of the system.

Arrangements of beam splitters also allow a single photon
state to be uniformly superposed over the three input ports. In
fact, an additional three port may be used to prepare such a
superposition state: as mentioned in Sec. II, using phase shifts
of π

6 at the vertices of a three-port makes the exit amplitudes
of all three ports equal (up to phase) for any input port. By
addition of appropriate external phase shifts to the three output
lines, momentum eigenstates of the form of Eq. (15) may be
initialized from this superposition.

At the right end of the system, a single-photon detector may
be placed at each output line. The final state for a given input is
then built up by making multiple measurements to determine
the various transition probabilities. The measurements may
be taken one step further by using homodyne detection to
determine the output phases relative to the input. In this way,
the transition amplitudes, not just the probabilities, may be
determined.

In the current paper, we consider only separable input states,
but various forms of superposition states and entangled states
could also be considered. In this case, the detectors would be
connected in coincidence in order to determine the final state
correlations.

In passing, it should be pointed out that the method
described above for producing momentum eigenstates also
provides a simple means of producing spatial W -states. With
π
6 vertex phases and appropriate phase shifts at the output
lines, a three-port with a single- photon input at any vertex
can be made to output the state 1√

3
(|100〉 + |010〉 + |001〉),

with equal amplitudes to be in three different spatial modes.
Here, |mnp〉 denotes the state with m, n, and p photons
exiting respectively at ports A, B, and C. Clearly, this tripartite
W -state can be generalized to an n-partite W -state by replacing
the three-port with an n-port of larger n.

E. A compactified system

Instead of using a chain of multiports, an equivalent system
can be formed with fewer resources by taking just two
multiports connected as shown Fig. 4(a). The photons then
reflect back and forth between the two multiports, with no
circulators needed. At each discrete time step the photons will
alternate direction, but will always remain localized in the
same spatial region, between the two multiports. The time
evolution then generates superpositions of random sequences
of values m1,m2,m3, . . . , where each value in the sequence
is given by the label of one of the three ports. Thinking of
the lines between the multiports as three spatial positions, the
Hamiltonian generates dynamics that cause random motions
among these three discrete spatial points. There will then
be a momentum variable (a dimensionless quasimomentum)
describing the motion between these points. There can be
superpositions between clockwise and counterclockwise mo-
tions, allowing standing waves to occur.

1
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State

Preparation
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Optical Switch Optical Circulator
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(b)

FIG. 4. (a) A compact system equivalent to that of Fig. 3, but
which operates using just two multiports; the spatial evolution from
left to right in Fig. 3 is replaced by time evolution within a single
region. The photons travel in opposite directions on successive time
steps. (For clarity, the figures are not drawn to scale: the multiports
should be very small compared to the distances between them.) (b)
After coupling the input into the system, a gated optical switch allows
measurement of the output state after a fixed number of time steps.

Optical circulators are used to separate input and output,
with electro-optical switches used to release the output to the
detectors after the desired number of time steps as shown in
Fig. 4(b). In this way, walks of arbitrarily long duration can be
simulated with a single unit containing only two multiports.
The maximum number of steps achievable will then be limited
only by coherence considerations.

V. A SYSTEM WITH BOTH SPATIAL AND “INTERNAL”
DEGREE OF FREEDOM

A. Time-reversible systems

The previous section allowed simulation of a system with
one three-valued degree of freedom, which could be taken to
represent either a spatial or internal degree of freedom. The
system of this section incorporates both spatial and internal
variables simultaneously.

An additional important difference between this section and
the previous one is related to the idea of reversibility. In the last
section it was assumed that the system had been arranged to
make sure that the photons flowed only in one direction, from
left to right. The states were labeled by the positions of the
photons, with no need to distinguish direction of motion. In this
case, the unitary transition matrix was found to be proportional
to a Hermitian matrix that could serve as the Hamiltonian.
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Now we wish to restore the time reversal symmetry of
the system and allow the light to move in any direction
though the network. Therefore, we need to distinguish states
moving in different directions, and for any possible transition
that can occur we must also allow its time-reversed version.
The time-reversed transition matrix is obtained from U by
taking its Hermitian conjugate, U †. If the states are labeled
by both position and direction of motion of the photons,
then the number of possible states is doubled. Imagine that
the states of the three-port are now labeled by both the
port label and a binary label such as “ingoing/outgoing” or
“left-moving/right-moving”. Then the matrix U is replaced by
the larger matrix

Ĥ =
(

0 U †

U 0

)
, (17)

which includes the time-reversed transitions. One of the
nonzero blocks represents transitions from ingoing or left-
going states at a vertex to outgoing or right-going states;
the other block represents transitions in the other direction.
Because U is unitary, U †U = 1, it is easily checked that this
expanded matrix is both unitary and Hermitian and that it
squares to the identity, Ĥ 2 = I . As a result, we find that the
corresponding matrix

V ≡ e−iĤT = I cos T − iĤ sin T (18)

is also unitary. Thus, from the transition amplitudes determined
by the original U , we form (i) a new operator Ĥ which
can serve as a Hamiltonian, and (ii) a corresponding unitary
operator V that acts as the full transition operator associated
with this Hamiltonian. V is double the dimension of the
original U . When Ĥ is of the form of Eq. (17), notice that
if the period is taken to be T = π

2 then the Hamiltonian and
the transition matrix V are the same, up to overall constants,
as was the case in the previous section.

Additional terms may also appear in the diagonal blocks
of Ĥ representing, for example, left → left or right → right
transitions, as long as they are real and diagonal or occur in
Hermitian conjugate pairs. Such extra terms in the diagonal
block can appear because of, for example, the possibility of
a left-moving mode on one edge becoming left-moving on an
adjacent edge at the next step.

B. Analogy with beam splitters

An example of the sort of situation described above is for
an ordinary nonpolarizing beam splitter. Normally, two ports
(for example ports 1 and 2 in Fig. 1) are used as input, and two
as output (ports 3 and 4). The beam splitter is then described
by a unitary matrix, which can be taken to be

U
(2)
BS = 1√

2

(
1 i

i 1

)
. (19)

The two columns represent the two input directions, while
the two outputs are represented by the rows. But if the beam
splitter is connected in a network, where photons could be
coming from any direction, any of the four ports could be used
for either input or output at any given moment, so the matrix
must have four input columns and four output rows and is of

m-1 m+2m+1m

+1

-1
0

FIG. 5. A system that can support three or six internal states per
lattice site. m labels the site, and three edges within the site are
labeled 0, ± 1. If propagation direction of the light is included, then
this doubles the number of states per site.

the form given in Eq. (17):

U
(4)
BS = 1√

2

⎛
⎜⎝

0 0 1 −i

0 0 −i 1
1 i 0 0
i 1 0 0

⎞
⎟⎠ =

(
0 U

(2)†
BS

U
(2)
BS 0

)
. (20)

It is easily verified in this case that e− iπ
2 U

(4)
BS is proportional to

U
(4)
BS , so that a matrix of this form can serve as both Hamiltonian

and evolution operator.

C. A discrete time-reversible system

Now consider a collection of three-ports connected to form
the chain shown in Fig. 5. The chain is divided again up into
a string of lattice sites, indicated in the figure by the dashed
boxes. Integer m is used to label the lattice sites (i.e., the
horizontal position), with m increasing from left to right. The
states within each site are labeled by an additional integer from
among {−1,0, + 1}: +1 means the photon is on the upper
horizontal branch, −1 means the lower horizontal branch, and
0 is the vertical branch. Further, we label the direction the
photon is moving at each moment according to the symbols
L or R. L corresponds to leftward motion on a horizontal
branch or upward on a vertical branch. R represents rightward
or downward motion. Therefore, the states are denoted by

|m,j,D〉, (21)

where m = 1, . . . ,N for a lattice containing N sites, j ∈
{0, − 1,1}, D ∈ {L,R}.

The input and detection considerations are similar to those
of the last section. In the current case, since the evolution is
left-right symmetric, it may be desired to couple the input
state into the middle of the system [by means similar to that of
Fig. 4(b)], and make measurements at both ends of the chain.

The Hamiltonian at each cell should be of the form of
Eq. (17), plus possible terms in the diagonal blocks due
to intercell transitions. It is straightforward to use the local
transition matrix U for the individual multiports to find the
global transition amplitudes of the full system between the
states of Eq. (21). This gives the transition operator Uc for the
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full chain. The resulting Hamiltonian Ĥ ′
c is:

Ĥ ′
c = 1

3

N∑
m=1

⎧⎨
⎩

1∑
j=−1

[|m,j,R〉〈m,j,L| + |m,j,L〉〈m,j,R|]

−2[|m,1,R〉〈m,0,L| + |m,0,R〉〈m,1,L| + |m, − 1,R〉〈m,0,R| + |m,0,L〉〈m, − 1,L|
+|m − 1,1,L〉〈m,0,L| + |m − 1, − 1,L〉〈m,0,R| + |m − 1,1,L〉〈m,1,L| + |m − 1, − 1,L〉〈m, − 1,L|

+|m + 1,1,R〉〈m,1,R| + |m + 1,0,R〉〈m,1,R| + |m + 1, − 1,R〉〈m, − 1,R| + |m + 1,0,L〉〈m, − 1,R|]
⎫⎬
⎭ (22)

Ĥ ′
c represents a system with one spatial dimension and a six-dimensional “internal” space. Experimentally, measuring the

photon direction along with its position adds complications, so here we simplify matters by reducing to a three-dimensional
internal space. If propagation direction is never measured, then the Hamiltonian can be projected onto the diagonal subspace of
left- and right-moving modes. If the projection operator is P , then the resulting operator Ĥc = P †Ĥ ′

cP becomes

Ĥc = 1

3

∑
m

⎧⎨
⎩

∑
j={0,±1}

|m,j 〉〈m,j | −
√

2
∑

j={±1}
[|m,j 〉〈m,0| + |m,0〉〈m,j |]

−
√

2
∑

j={±1}
[|m − 1,j 〉〈m,j | + |m + 1,j 〉〈m,j | + |m − 1,0〉〈m,j | + |m − 1,j 〉〈m,0|]

⎫⎬
⎭.

Going to momentum space, define

|m,j 〉 = 1√
N

∑
k

e−imk|k,j 〉. (23)

The momentum space Hamiltonian then becomes

Ĥc = − i

3

∑
k

{
|k,0〉〈k,0| + (|k,1〉〈k,1| + |k, − 1〉〈k, − 1|)(1 − 2

√
2 cos k) (24)

− 2
√

2 cos

(
k

2

)
[eik/2(|k,1〉 + |k, − 1〉)〈k,0| + e−ik/2|k,0〉(|k,1〉 + |k, − 1〉)]

}

= − i

3

∑
k

|k〉〈k|

⎛
⎜⎝

1 − 2
√

2 cos k −2
√

2eik/2 cos k
2 0

−2
√

2e−ik/2 cos k
2 1 −2

√
2e−ik/2 cos k

2

0 −2
√

2eik/2 cos k
2 1 − 2

√
2 cos k

⎞
⎟⎠. (25)

The matrix is written here in the basis of internal states,
(+1,0, − 1). It can be diagonalized in order to find the
eigenstates, leading to a set of three eigenvectors for each
fixed k value, given (up to normalization and phase) by

|ψ1〉 =

⎛
⎜⎝

−1

0

1

⎞
⎟⎠, |ψ2〉 =

⎛
⎜⎝

1

−2
√

2

1

⎞
⎟⎠, (26)

|ψ3〉 =

⎛
⎜⎝

−1

2
√

2(1 + cos k)

1

⎞
⎟⎠, (27)

with respective energy eigenvalues

E1 = 1
3 (1 − 2

√
2 cos k), (28)

E2 = 1
3 (1 − 2

√
2(1 − cos k)), (29)

E3 = 1
3 (1 + 2

√
2). (30)

These are plotted in Fig. 6. Notice that the energy eigenvalues
always satisfy

E1 + E2 + E3 = 1, (31)

FIG. 6. Energy level diagram of the three state system of Fig. 5.
E3 is constant, while E1 and E2 oscillate with k. Note that E1 has no
gap with E2 or E3, but that E2 and E3 are always separated by a gap.
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for all k. In all, there are 3N eigenvectors, corresponding to the
N momentum values (k = 2πn

N
for n = 1, . . . N) and the three

values of the internal index (0, ± 1). As in the last section, the
constant terms on the diagonal contribute a constant (x- and
k-independent) background term, in this case of energy 1

3 .

D. Energy band structure

For each k, there are three energy levels. They are
nondegenerate in general, except at isolated k values where
the levels cross or become tangent to each other. Note also
that there is always an energy gap between E2 and E3, but
that E1 has k values where its gap with the other two states
closes. Levels 1 and 3 meet (E1 = E3) at the value k = π ,
while E1 = E2 at the values k = ±π

3 . Thus, at those momenta
there can be transitions from eigenstate |ψ1〉 to the other two
states, |ψ2〉 and |ψ3〉, if the system is perturbed. However,
|ψ2〉 and |ψ3〉 never transition directly to each other; they can
only go via |ψ1〉 as an intermediate state; moreover, such a
transition would be indirect in the terminology of solid state
physics, since it requires a change of k as well. Because
transitions between |ψ2〉 and |ψ3〉 are always mediated by
passage through |ψ1〉, |ψ1〉 plays a role similar to that of a
photon or other intermediate gauge boson in particle physics.
A more sophisticated simulation setup along these lines might
therefore eventually open the way for optical simulation
of gauge theory models such as quantum chromodynamics,
with the role of nonlinear interactions being simulated via
interference effects.

As mentioned in Sec. III, the Hamiltonian can be written in
the form

Ĥc = d0I +
∑
j=18

dj�j = d0I + d · �, (32)

where the Gell-Mann �j matrices play the same role for the
algebra su(3) that the Pauli matrices play for su(2). As the
parameters are varied, the vector d = (d0,d1, . . . ,d8) does
not explore the full nine-dimensional space, but remains
contained in a seven-dimensional subspace spanned by the
set {I,�1,�2,�3,�6,�7,�8}. The explicit form of the Hamil-
tonian in terms of the �j may be found in the Appendix.
The paths on this large subspace have enough room to avoid
topological obstructions as the system parameters are varied,
so that any of the possible paths can be smoothly deformed
into any other as the parameters are continuously changed.
The system is therefore always topologically trivial. It remains
to be investigated as to whether varying the parameters of
the three-port may allow simulation of more general SU(3)
Hamiltonians.

VI. CONCLUSIONS

Through the examples discussed in the previous sections, it
has been shown that the behavior of Hamiltonian systems with
both spatial and internal degrees of freedom can be simulated
using one-dimensional chains of directionally unbiased three-
ports. A number of obvious generalizations exist, such as using
n-ports with higher n, connecting the n-ports into two- and
three-dimensional arrays with different connection topologies,

or varying the multiport parameters. In this way, a variety
of Hamiltonians involving nearest neighbor couplings can be
implemented. By changing the phase shifts at the multiport
vertices, the relative strengths of the interactions between
different nearest-neighbor pairs can be altered, allowing the
simulation of spatially varying potentials. Additional degrees
of freedom that can be used to increase the complexity of
the simulated systems include phase shifts on the edges of the
multiports or between multiports, and varying the transmission
profile of the beam splitters within the multiports. The results
of the previous sections provide hints that such generalized
versions of this approach may be useful for simulating the types
of Hamiltonians that appear in solid state physics and particle
physics, possibly including strongly interacting Hamiltonians
for which perturbative methods break down.

One generalization of special interest is that the simulating
system can be built out of unit cells that are combinations
of several multiports, possibly with additional phase shifts
or other effects added on the connections between them. By
periodically altering the parameters of these complex unit cells,
the behavior of particles in periodic crystal lattices can be
simulated. In particular, it will be shown elsewhere [10] that
by this means the Su-Schreiffer-Heeger Hamiltonian, which
supports phases of nonzero winding number and topologically
protected boundary states, can be simulated.

In general, it seems to be possible to simulate arbitrary
physical systems with nearest neighbor interactions by varying
the parameters appropriately to adjust the allowed energy
levels. Similarly, varying these parameters spatially along
the chain can simulate interactions with arbitrary external
(discrete-space) potentials. Variation of the phases allows for
the positions of the energy levels to be varied in a controllable
manner. For example, the setup in Sec. IV has two degenerate
levels. The degeneracy is due to the equality of all the vertex
phases and can be lifted by changing those phases; for some
parameter ranges, if two phases are held constant then the
energy-level splitting varies approximately linearly with the
other phase, allowing easy control of the system’s behavior.
This could be used for example to simulate the behavior of
systems in magnetic fields, with the difference between two of
the vertex phases playing the role of the field, or to simulate
three- or four-level atomic systems.

Such generalizations hold promise for simulating a large
range of effects, and possibly carrying out complex high-
dimensional computations of the properties of such discrete-
time systems. It should be emphasized again that all of these
simulations are implemented by means of local linear optics
effects only. In addition, all of the elements used can be placed
on-chip, which increases stability and allows large networks
to be built up in a highly scalable manner. As a result, this
approach seems especially promising for the simulations of
complex physical systems by relatively simple means.
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APPENDIX

The Hermitian Gell-Mann matrices form a basis for the
eight-dimensional algebra of su(3) in the same manner that
the Pauli matrices form a basis of the three-dimensional su(2).
Explicitly, these matrices are given by [15]

�1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, �2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, (A1)

�3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, �4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, (A2)

�5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, �6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, (A3)

�7 =
⎛
⎝0 0 0

0 0 i

0 i 0

⎞
⎠, �8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (A4)

The corresponding SU(3) group generated by exponentiating
elements of the algebra is spanned by these matrices together
with the identity matrix.

In terms of the group basis, the Hamiltonian of Eq. (23) can
be written as

Ĥc = 1

3

{(
1 − 4

√
2

3
cos k

)
I +

√
2

[
�8√

3
− �3

−(1 + cos k)(�1 + �6) + sin k(�2 − �7)

]}
, (A5)

which lives on the seven-dimensional subspace of the full
nine-dimensional group space spanned by the basis elements
{I,�1,�2,�3,�6,�7,�8}. Any closed path in this space is
contractible: it can be shrunken to a point while avoiding
the missing zero-energy point at the origin. As a result all
Hamiltonians in the space are topologically trivial.
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