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We propose an interferometric method for statistically discriminating between nonorthogonal states in high-
dimensional Hilbert spaces for use in quantum information processing. The method is illustrated for the case of
photon orbital angular momentum (OAM) states. These states belong to pairs of bases that are mutually unbiased
on a sequence of two-dimensional subspaces of the full Hilbert space, but the vectors within the same basis are
not necessarily orthogonal to each other. Over multiple trials, this method allows distinguishing OAM eigenstates
from superpositions of multiple such eigenstates. Variations of the same method are then shown to be capable of
preparing and detecting arbitrary linear combinations of states in Hilbert space. One further variation allows the
construction of chains of states obeying recurrence relations on the Hilbert space itself, opening a new range of
possibilities for more abstract information-coding algorithms to be carried out experimentally in a simple manner.
Among other applications, we show that this approach provides a simplified means of switching between pairs
of high-dimensional mutually unbiased OAM bases.

DOI: 10.1103/PhysRevA.91.043806 PACS number(s): 42.50.Dv, 42.50.Tx, 42.25.Hz

I. INTRODUCTION

Quantum key distribution (QKD) aims to enable two agents,
Alice and Bob, to generate a shared cryptographic key while
preventing an unauthorized eavesdropper, Eve, from gaining
significant information about the key without being revealed.
In the context of optics, the most common variable used to
encode the key is the photon’s polarization. Polarization spans
a two-dimensional space, so that it normally can encode only
one bit of key per photon. In order to generate multiple bits per
photon, other variables may be employed which span higher-
dimensional Hilbert spaces [1,2]. The most promising of these
is the photon’s orbital angular momentum (OAM). The OAM
along the propagation axis is Lz = l�, where the topological
charge l is restricted to integer values, and in principle can be
arbitrarily large. If a stream of photons is produced whose l

values are allowed to range between −L and +L, then each
photon can encode up to log2(2L + 1) bits of information in
its OAM.

In [3], an approach was introduced for using OAM to
generate a secret encryption key based on a novel entangled
light source [4–8] that produces output with an OAM spectrum
whose absolute values are restricted to the Fibonacci sequence.
Recall that the Fibonacci sequence starts with initial values
F1 = 1 and F2 = 2, generating the rest of the sequence via
the recurrence relation Fn+2 = Fn+1 + Fn. These states are
used to pump a nonlinear crystal, leading to spontaneous
parametric down conversion, in which a small proportion of
the input photons is split into two entangled output photons,
called the signal and idler. After the crystal, any photons with
non-Fibonacci values of OAM are filtered out. The result is that
angular momentum conservation and the Fibonacci recurrence
relation force the two output photons to have OAM values
that are adjacent Fibonacci numbers (for example Fm and
Fm+1). These photons can then be used to generate a secret
key; see [3,9] for more details on the procedure.

The Fibonacci key distribution protocol requires the ability
to distinguish between single OAM eigenstates and superposi-
tions of pairs of eigenstates. These two types of states belong
to two mutually unbiased bases on subspaces of the full Hilbert
space. The state discrimination cannot be done unambiguously
on a single trial, just as it cannot be determined in a single
trial whether a photon’s polarization is vertical or diagonal;
however, over many trials a statistical picture of the outcomes
can be built up in such a way that eavesdropping alters the
outcome probability distributions in a detectable manner. In
this manner, an eavesdropper can be revealed over multiple
trials even though it may not be possible to identify errors
on any individual trial. The details of how the eavesdropper
revelation works may be found in [9].

The Fibonacci protocol is an example of a more abstract
approach to QKD in which, rather than simply modulating
between two spatial measurement bases, more abstract mod-
ulations are carried out, switching between more general sets
of states in Hilbert space. Unlike polarization-based protocols,
the relevant unbiased bases in Hilbert space do not correspond
directly to projections onto bases in physical space, allowing
more freedom in the choice of bases used. By opening up
a broader range of states to manipulate, this approach has
promise to increase the key capacity per photon, to allow new
methods for safeguarding the security of the key, and in some
cases to simplify experimental implementations. In order to
carry out this program, it is necessary to have a simple means
of producing and detecting general (possibly nonorthogonal)
linear combinations of basis states.

In this paper, we examine the issue of discriminating
between nonorthogonal states formed from superpositions
of OAM eigenstates. We propose an interferometric method
which allows the user to distinguish between two different
superpositions or to distinguish superpositions from individual
eigenstates. There is some probability of error in the state
identification, due to the nonorthogonal nature of the states
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involved, but for the purposes of QKD this can be dealt
with in the reconciliation stage, as detailed in [9]. More
general discussions of the problem of nonorthogonal state
discrimination with minimal error may be found in [10–12].
Another approach to the study of superposition states in
OAM space via optical filtering with spatial light modulators
can be found in [13,14]. In [15], an approach was taken to
high-dimensional time-bin-encoded states that is similar in
spirit to what is done here, allowing measurements to be done
in arbitrary bases.

We first display a solution to the problem of sorting pairwise
superpositions of states. We then generalize the apparatus
to allow the detection of arbitrary linear superpositions of
OAM states. It is further shown how slight changes could
turn the same structure into a means of synthesizing arbitrary
superposition states. This is similar to the case of conventional
phase and polarization coding in telecom systems, where
Mach-Zehnder interferometers are used for both coding and
decoding of the signal. In the current case, the type of treelike
structure used to generate and detect these superposition
states will be referred to as a superposition generation and
detection tree (SGDT). The use of different SGDTs allows the
generalization of the Fibonacci protocol to similar protocols
based on other linear recurrence relations. Finally, we move
from recurrence relations on the real numbers to recurrence
relations on Hilbert space, showing how to construct chains
of states (as opposed to eigenvalues) that obey arbitrary linear
recurrence relations; this is done via a set of nested structures
we will refer to as a recursive state generator (RSG).

This paper is organized as follows. In Sec. II we review the
Fibonacci protocol as a motivating example for what follows.
In Sec. III, we then discuss the problem of nonorthogonal state
discrimination and introduce SGDTs for the states relevant to
the Fibonacci protocol, with generalizations that cover other
types of superposition states in Sec. IV. We then introduce
RSGs in Sec. V for the preparation of superposition states and
discuss the idea of recurrent sets of states in Hilbert space.
Finally, we briefly discuss conclusions in Sec. VI.

II. FIBONACCI KEY DISTRIBUTION

To provide a motivating example of the need for distin-
guishing between nonorthogonal superposition states within
unbiased bases, we review the essential ideas of the Fibonacci
protocol [3], which allows multiple key bits to be generated per
photon. In this protocol, distinguishing such states is necessary
both to determine the key and in order to provide security
against eavesdropping. Security of the protocol stems from the
random switching between measurements in two bases (the D
and L bases introduced below) that are mutually unbiased on
each of a chain of two-dimensional subspaces; but in one of
these bases the two basis vectors are mutually nonorthogonal.

The basic setup of [3] is shown schematically in Fig. 1.
The source on the left consists of an aperiodic nanoarray of
scatterers in the form of a Vogel spiral [4–8], followed by a
nonlinear down conversion crystal. The Vogel spiral causes
the scattered waves from the different scattering centers to
interfere in such a way that only components with OAM
belonging to the Fibonacci sequence survive. As a result
the pump beam entering the crystal is a superposition of
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FIG. 1. (Color online) Schematic setup for generating crypto-
graphic key with Fibonacci-valued OAM states. The L and D
detection stages, respectively, test for different OAM eigenstates or
different superposition states. Interference between scatterings in the
aperiodic Vogel spiral leads to an OAM spectrum in the pump that
is restricted to the Fibonacci sequence. The filters after the crystal
remove any non-Fibonacci values that appear in the down conversion
process. See [3] for more detailed description of the apparatus.

Fibonacci-valued OAM states,
∑

n |Fn〉. After the crystal, the
signal and idler states have OAM values that must sum to a
Fibonacci number, but are not necessarily Fibonacci numbers
themselves. Filters in the signal and idler paths then remove
the non-Fibonacci values. The result is that at the output
of the source there is an entangled two-photon state with
Fibonacci-valued OAM in the two output directions:

ψ =
∑

n

(|Fn−1〉A|Fn−2〉B + |Fn−2〉A|Fn−1〉B), (1)

where the index n runs over the indices of the allowed
Fibonacci numbers in the pump beam: |�〉pump = ∑

n |Fn〉.
Alice and Bob each receive half of the entangled pair. Each
of them uses a 50:50 nonpolarizing beam splitter to randomly
direct the photon either to one of two types of detection stages,
referred to as L and D stages. L-type detection consists of
an OAM sorter [16–18] followed by a set of single-photon
detectors. OAM sorters send different l values into different
outgoing directions, so that they register in different detectors,
allowing the value of l to be determined. In contrast, D-type
detection is used to distinguish between different superposition
states |Sn〉 of the form

|Sn〉 = 1√
2

(|Fn−1〉 + |Fn+1〉). (2)

The detection of such superposition states can be accom-
plished in several ways [13,19,20]. One complication with
the D-type detection is that adjacent superposition states
such as 1√

2
(|Fn−1〉 + |Fn+1〉) and 1√

2
(|Fn+1〉 + |Fn+3〉) are

not orthogonal, meaning that the two states cannot be unam-
biguously distinguished from each other. It is also necessary
to keep the possible key values uniformly distributed, so
that Eve cannot obtain any advantage from knowledge of
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the nonuniform distribution. These complications add some
complexity to the classical exchange (see [9] for details)
and alter the corresponding detection probabilities; however,
this extra complexity is well compensated by the increased
key-generating capacity. Moreover, the degree of complication
does not grow with the size of the alphabet used, so that the
benefits outweigh the complications by a larger amount as the
range of l values increases.

Note that the action of the spiral does not lead to loss of
any photons or energy. The energy is simply being redirected
from non-Fibonacci to Fibonacci modes via constructive
and destructive interference, causing no reduction of photon
efficiency in the apparatus. The signal and idler filters after
the crystal, on the other hand, do lower the efficiency through
photon loss. The percent of photons retained is simply given by
the fraction of the values in the chosen operating range that fall
on the Fibonacci sequence; for example, if the eight Fibonacci
values between 2 and 55 are used, this is about 15%. Since no
losses occur in the spiral, this is not enough to lower the event
rate below reasonable levels. As in all entanglement-based
QKD protocols, the principal constraints on key generation rate
come simply from the low efficiency of the down conversion
process itself and from losses in propagation between the
source and receivers.

Assume that the pump spectrum is broad enough to be
approximately flat over a sufficient span to produce signal and
idler OAM values of uniform probability over the range Fm0

to Fm0+N−1, for some m0. The outcomes for L-type detection
(OAM eigenstates) that will be used for key generation by
Alice and Bob are then simply |Fm0〉,|Fm0+1〉, . . . ,|Fm0+N−1〉.
The outcomes for D-type detection (twofold OAM superposi-
tion states) used by Alice and Bob for key generation run from

|Sm0〉 = 1√
2
{|Fm0−1〉 + |Fm0+1〉} (3)

to

|Sm0+N−1〉 = 1√
2
{|Fm0+N−2〉 + |Fm0+N 〉}. (4)

III. DISCRIMINATING SUPERPOSITION STATES

The sorting of the OAM eigenstates |Fn〉 in the L basis
is straightforward, but the sorting of the superposition states
|Sn〉 in the D basis is more problematic: because these states
are not orthogonal with the neighboring states two units above
and below them (〈Sn±2|Sn〉 = 1

2 ) they cannot be distinguished
unambiguously from each other. The complications this brings
are the price of increasing the size of the coding space.

To deal with this, we work by analogy to superposition
states of polarization. Suppose Alice is sending a stream of
photons to Bob, and that each photon is either polarized
in the vertical or horizontal basis or in the diagonal basis.
Imagine that Bob sends each photon he receives through a
Mach-Zehnder interferometer, as shown in Fig. 2. In this
interferometer, a polarizing beam splitter transmits vertically
polarized photons and reflects horizontally polarized pho-
tons. After separating the two polarization components, each
component is rotated by a half-wave plate so that the two
polarization vectors point along the same diagonal. It is then
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FIG. 2. (Color online) Apparatus for statistically distinguishing
sets of vertically or horizontally polarized photons from diagonally
polarized photons. The half-wave plates rotate vertical and hori-
zontal polarization states to a diagonal state, in order to restore
indistinguishability between paths. If the photons are vertically or
horizontally polarized, the two detectors C and D will register the
same number of events. For diagonally polarized states at +45◦ from
the horizontal, destructive interference will prevent detector D from
registering any events, with constructive interference occurring at
detector C. For input states polarized along the other diagonal (−45◦)
the roles of the detectors are reversed: constructive interference occurs
at D and destructive interference prevents C from firing.

impossible to determine which path was taken to reach the
second (nonpolarizing) beam splitter. The amplitudes in the
two arms of the interferometer are then recombined and sent
to the two detectors labeled C and D. If the incoming photon
is either vertically or horizontally polarized, then the two
detectors are equally likely to fire. On the other hand, if the
initial photon is diagonally polarized, |↗〉 = 1√

2
(|↑〉 + |→〉),

then at the final beam splitter there will be interference between
the two amplitudes. In particular, there will be constructive
interference at detector C and destructive interference at
detector D.

We may expand the apparatus of Fig. 2 to make its
appearance more symmetrical and to make the analogy to the
OAM case clearer below. By using a beam splitter to couple
the interferometer of Fig. 2 to a similar one in which the
half-wave plates rotate polarizations to the opposite diagonal
(Fig. 3), we now have a setup in which vertically or horizontally
polarized photons are equally likely to trigger any of the
four detectors, but the diagonally polarized superposition state
|↗〉 = 1√

2
(|↑〉 + |→〉) can only trigger detectors C↗ and

D↖. Similarly, superposition state |↖〉 = 1√
2

(|↑〉 − |→〉) can
only trigger detectors C↖ and D↗. On a single trial, it is
impossible to determine the incoming polarization state of an
individual photon, but over many trials the distribution of the
states received by Bob can be built up and compared to the
distribution sent by Alice. This setup can therefore be used to
statistically detect tampering with the states en route.

A similar idea can be used for OAM (Fig. 4). An OAM sorter
replaces the polarizing beam splitter, and a pair of detectors
Cn and Dn is used at the output ports of the final nonpolarizing
beam splitters. If Cn fires during the key-generating trials, we
count that as an |Sn−1〉 detection. Due to destructive interfer-
ence, Dn should not fire for the superposition state input of the
considered form, so its firing will count as an |Fn〉 detection.
Then the scheme of [9] is used to reconcile Alice’s and Bob’s
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FIG. 3. (Color online) Two copies of the previous interferometer
(Fig. 2) can be combined, with the half-wave plates in the upper and
lower copies taking the polarization vectors to opposite diagonals.
If either of the states |V 〉 or |H 〉 is input, all four detectors have
equal probability of firing. But if one of the two superposition states
| ↗〉 = 1√

2
(|↑〉 + |→〉) or |↖〉 = 1√

2
(|↑〉 − |→〉) is input, then only

the C detector in one interferometer and the D detector in the other
can fire. (The π phase shift in one branch of the bottom interferometer
is not necessary, but is inserted to keep the labeling of the C and D

detectors consistent in the upper and lower interferometers.)

trials by classical information exchange in order to arrive
at an unambiguously agreed-upon key. During the security
checks, the distributions of counts in Cn and Dn separately are
examined in order to detect eavesdropper-induced deviations
from the expected probability distributions. In order to achieve
the indistinguishability required for interference, the OAM of

OAM Sorter

Input state

FIG. 4. (Color online) A portion of a detection unit for statis-
tically detecting superpositions of OAM states, analogous to the
polarization version of the previous figure. The sorter separates
different OAM values, which are then shifted to zero OAM by
spiral wave plates or holograms (the yellow circles). From the top
downward, the OAM shifters shown change the incoming OAM value
by �l = −Fn−2,−Fn,−Fn+2,−Fn+4. Superpositions of the form
|Fn〉 + |Fn+2〉 cause constructive interference at the Cn detectors and
destructive interference at the Dn detectors, while OAM eigenstates
lead to equal detection rates at both types. Coming out of the
same sorter is a similar arrangement (not shown) for the states
. . . |Fn−1〉, |Fn+1〉, |Fn+3〉, . . . .

each photon is shifted to zero after the sorting (by means of
a spiral phase plate, for example). This is analogous to the
use of a diagonal polarizer to restore indistinguishability in
the polarization case. Note that measurements with detectors
Cn and Dn, respectively, are equivalent to looking for nonzero
projections onto the states

|Cn〉 = i√
2

(|Fn〉 + |Fn−2〉) = i|Sn−1〉, (5)

|Dn〉 = 1√
2

(|Fn〉 − |Fn−2〉) . (6)

These two sets of states are also mutually nonorthogonal; for
equal n, we find 〈Cn|Dn〉 = 0, but more generally 〈Cn|Dm〉 =
1
2 (δm,n−2 + δm,n+2). Note that |Cn〉 and |Dn〉 are the analogs of
diagonal polarization states in the two-dimensional subspace
spanned by |Fn〉 and |Fn−2〉.

The configuration of Fig. 4 is analogous to multiple copies
of the interferometer of Fig. 2, all being fed by a single OAM
sorter. This generalizes Fig. 3 from two interferometers to
many. The sorter plays the role of the polarizing beam splitter
in Fig. 2, directing different input states into different paths
through the system. Similarly, the diagonal polarizers and the
OAM shifters play the same role in the two devices, each
being used to restore indistinguishability to the amplitudes that
followed different paths, allowing these amplitudes to interfere
when recombined at the detectors. Eigenstates are equally
likely to trigger the C and D detectors, while superposition
states of the form of |Sn〉 should never trigger the D detectors.
As in the polarization case, the state of an individual trial
cannot be determined, but the statistical distributions of
detections are changed for different input states; the sole
exception to this is that if a D detector fires we know that
the state must be an eigenstate.

IV. GENERALIZATIONS

The apparatus of Fig. 4 can be generalized in a number
of ways. For example, consider the setup in Fig. 5. Again,
the OAM sorter sends eigenstates outward in a series of
spokes, but now a set of 50 : 50 beam splitters causes each
spoke to intersect with two others. Although not drawn in,
it is implied that there are beam splitters at each of the
points where lines in the diagram split or cross. Each of the
yellow circles shifts the OAM to zero, so that interference can
occur. Suppose the lines going out from the beam splitter in
the portion shown carry angular momenta ln,ln+1, . . . ,ln+4.
Assume that the state entering the sorter is a uniform
superposition of these states ∼ ∑

n |ln〉. Then the state arriving
at detector Dn is proportional to |ln〉 − |ln−1〉 − |ln−2〉, while
Cn receives i (|ln〉 + |ln−1〉 + |ln−2〉). If the states entering the
OAM sorter are filtered to allow only a subset of the so-
called Tribonacci numbers (obeying the three-term Tribonacci
relation Tn = Tn−1 + Tn−2 + Tn−3 [21,22]), then the setup,
when fed with a source of entangled three-photon states,
can be used to construct a three-photon protocol based on
the Tribonacci numbers, in direct analogy to the two-photon
Fibonacci protocol. Although rapidly becoming less practical
with increasing N , the extension to the N -bonacci recurrence
relation Tn = Tn−1 + Tn−2 + . . . Tn−N is obvious.
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OAM Sorter

FIG. 5. (Color online) Portion of a detector setup for discriminat-
ing Tribonacci states. Each yellow circle represents an OAM shifter
that takes the OAM in that branch to zero. Each place where lines
split or cross is implied to have a beam splitter. The portion shown
has OAM values from ln to ln+4 coming out of the OAM sorter.

More generally still, a similar setup can be defined in which
beam splitters cause each outgoing beam to intersect with any
n − 1 others before reaching a detector, including intersections
between beams that are not necessarily nearest neighbors. By
further adding appropriate phase shifts and attenuation factors
in the beams, we may use the setup to detect other n-fold
linear combinations of OAM states. Suppose, for example, that
one wishes to test for linear combinations of OAM values of
the form a1|xm−1〉 + a2|xm−2〉 + · · · + an|xm−n〉, where {xm}
is some predetermined set of OAM values. A similar recursive
tree can be constructed such that (i) each outgoing line
intersects n beam splitters and (ii) before the j th beam splitter
in any line the intensity is attenuated by a factor of tj = | aj

amax
|

(where amax is the largest of the coefficients) and phase shifted
by φ = arg(aj ). The result is that the C-type detectors will
be sensitive to superposition states of the desired form. If the
superpositions are nonorthogonal, then there is of course still
ambiguity in identifying them, but over multiple trials it will
be possible to know whether the incoming states belong to this
set of superpositions or not by their statistics, as in Sec. III.

Any desired linear combination of OAM states can be
detected in a similar manner. As one particular example, Fig. 6
shows a portion of a setup in which the Cn detectors test for
states of the form −|xn〉 + 1

2 |xn−1〉, for some known set {xn}
of OAM values. Again, if the input is an OAM eigenstate
with l = xn, then the Cn and Dn detectors will fire with
equal probability, while Cn+1 and Dn+1 will fire with one
quarter of the probability. In contrast, if the input state is
proportional to −|xn〉 + 1

2 |xn−1〉, then the D detectors will
not fire due to destructive interference. The same setup, but
with the beam splitters mixing next-nearest neighbors instead
of nearest-neighbor beams, would similarly test for states of
the form −|xn〉 + 1

2 |xn−2〉.
Further note that if the additional ingredient of coincidence

counting is added then sufficient numbers of detectors and
beam splitters will allow detection of various two-particle
states in a similar manner. A two-photon bilinear state such
as |ln+4〉 (|ln〉 + |ln+1〉 + |ln+2〉), for example, can be detected

OAM Sorter

FIG. 6. (Color online) Portion of the setup for detecting states
of the form −|xn〉 + 1

2 |xn−1〉, where {xn} is a predetermined set of
OAM values. One output from the first beam splitter in the nth line
is attenuated in amplitude by 1

2 and the other output is phase shifted
by π .

by connecting a coincidence counter between the output of
detector Cn in Fig. 5 and a detector placed directly in the ln+4

output of the OAM sorter.
One particular example of the usefulness of this approach

can be seen by considering the switching between pairs of
mutually orthogonal bases of dimension greater than 2. In
Fig. 7, detection stages for a pair of mutually unbiased bases of

Sorter

M1

M3

M4

M2
Fn

Fn+1

Fn+3

Fn+2

Sorter

L1

L3

L
(a)

(b)

4

L2Fn

Fn+1

Fn+3

Fn+2

FIG. 7. (Color online) (a) An OAM sorter followed by detectors
makes measurements in a four-dimensional space spanned by the four
incoming basis states (the states |Fn〉, . . . |Fm+3〉 in the case drawn).
(b) An arrangement for measuring in a basis that is mutually unbiased
to the basis of (a). The yellow circles shift the OAM to zero, so that
interference can occur, and 50 : 50 beam splitters are implied at each
of the points where lines cross. Additional beam splitters (not shown)
are needed in some of the lines to equalize the detection probabilities
in the four detectors (M1, . . . ,M4).
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dimension 4 are shown. Figure 7(a) shows the setup for detec-
tion in the L basis (OAM eigenbasis), for the four-dimensional
space spanned by states |Fn〉,|Fn+1〉,|Fn+2〉,|Fn+3〉. Fig-
ure 7(b) shows an arrangement that detects states in a basis
that is mutually unbiased with respect to L. In this second ar-
rangement, the detectors M1,M2,M3,M4, respectively, detect
the states

|ψ1〉 = 1
2 {|Fn〉 + |Fn+1〉 + |Fn+2〉 + |Fn+3}, (7)

|ψ2〉 = 1
2 {|Fn〉 + |Fn+1〉 − |Fn+2〉 − |Fn+3}, (8)

|ψ3〉 = 1
2 {|Fn〉 − |Fn+1〉 − |Fn+2〉 + |Fn+3}, (9)

|ψ4〉 = 1
2 {|Fn〉 − |Fn+1〉 + |Fn+2〉 − |Fn+3}. (10)

Random switching between the two bases can be done
passively, by having a beam splitter randomly send each photon
to one arrangement or the other. This is in contrast to the setup
in the original experiment of [23], which switched between
two mutually unbiased bases of dimension 3 by means of a
complicated arrangement of mechanically shifted holograms.

V. STATE SYNTHESIS

We note that the situation presented in the previous sections
contains two different sequences of linear combinations. There
is the recursive sequence of values Fn = Fn−1 + Fn−2 on the
space of real numbers, and there is the nonrecursive sequence
of states |Fn〉 (or equivalently, of |Cn〉 and |Dn〉) on the Hilbert
space of the system. This leads to the question of whether
similar optical arrangements to those shown above can produce
more general linear combinations on the Hilbert space, and
whether we can in fact construct recursive sequences of states
in Hilbert space. In general this would mean a sequence of
states in which each is proportional to a linear combination
of several of the previous states in the sequence, according
to some regular rule. We require proportionality rather than
equality due to the need to normalize the states.

With some slight alterations, the interferometric trees of the
previous sections can be used to prepare desired superposition
states from incoming OAM eigenstates, instead of detecting
different types of pre-existing superpositions. By removing the
detectors and OAM shifters (the yellow circles in the figures
of the previous sections) and by illuminating the sorter with a
uniform superposition of OAM states,

∑
l |l〉, we may arrange

for different superpositions to appear at the various output lines
on the right. For example, the same arrangements described
in the last section to detect states a1|lm−1〉 + a2|lm−2〉 + . . . +
an|lm−n〉 can, when detectors and OAM shifters are removed,
prepare these same states at the locations previously occupied
by the C detectors.

For example, consider Fig. 4 again, but now with these
changes. The exit ports where the C-type detectors previously
were will now output states proportional to |ln〉 + |ln−2〉.
Similarly, removing the D-type detectors, the corresponding
output ports will produce states proportional to |ln〉 − |ln−2〉.
By building up more complicated trees, we can construct
outputs that are arbitrary linear combinations of the OAM
states. This ability to tailor different superpositions of OAM
states may be useful for a number of applications in quantum
communication and quantum computing.

INPUT OUTPUT

Attenuation

1

3

2

1

2

FIG. 8. (Color online) The basic unit cell for the recursive state
generator (RSG) in the case of the Fibonacci recurrence relation.
Given a superposition of two input states (for example |xn〉 = |Fn〉 and
|xn+1〉 = |Fn+1〉), the cell produces a state proportional to |xn+2〉 ≡

1√
2

(|xn〉 + |xn+1〉). The attenuation of the amplitude in the bottom

line by 1√
2

is there to ensure that the amplitudes of the three states
are equal. By adding additional attenuations and phase shifts in the
various branches, unit cells for any other complex, the linear recursion
relation can be constructed.

Finally, consider the possibility of creating states that
themselves obey a recurrence relation. As a concrete example,
consider again the Fibonacci relation. But now we wish the
states themselves, not their OAM values, to obey the relation.
In other words, we desire a set of states |xn〉 satisfying |xn〉 ∼
|xn−1〉 + |xn−2〉, where ∼ denotes equality up to normalization
and the xn are the allowed OAM values of the states.
Suppose we again illuminate an OAM sorter with a uniform
superposition of OAM states,

∑
l |l〉. We then take two of the

output lines from the sorter (say those for l = xn and xn+1) and
feed them into the unit cell shown in Fig. 8. The input state to
the unit cell is then 1√

2
(|xn〉1 + |xn+1〉2), where the labels 1 and

2 refer to the two input ports. Then, in addition to the original
superposition leaving from the top two output ports on the right
of the cell, there is an equal amplitude for the superposition
state |xn+2〉 ≡ 1√

2
(|xn〉 + |xn+1〉) to exit the lower port. In

other words, the input state 1√
2

(|xn〉1 + |xn+1〉2) is transformed

into the output state 1√
3

(|xn〉1 + |xn+1〉2 + |xn+2〉3). Now
suppose we nest multiple copies of these unit cells together
as in Fig. 9. If the attenuation factors are appropriately
adjusted, the states at the output ports (assuming p unit cells
are used) will be |xn〉1,|xn+1〉2,|xn+2〉3 . . . |xn+p+1〉p+2, each
appearing with equal amplitude. We refer to this arrangement
as a recursive state generator (RSG). (Recursively constructed
quantum states have been considered before [24] from a
different perspective.)

As the number of unit cells nested in the RSG increases,
the output intensity decreases exponentially: each additional
unit drops the output per output port by a factor of 2. But
there is nothing in the setup that is especially sensitive to
high intensities, so by using large input intensities it can be
arranged to have a sufficiently large number of cells to produce
complicated sets of states while maintaining usable output
levels.

By placing the RSG at the output of an OAM sorter
and allowing switching between different output lines of
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Unit cell
Attenuation

FIG. 9. (Color online) Recursive state generator (RSG). Multiple
copies of the unit cell of Fig. 8 (represented by the blue boxes)
can be concatenated in a fractal-like manner to form a set of output
states that obey the Fibonacci relation |xn〉 = 1√

2
|xn−1〉 + |xn−2〉. Each

additional cell added has half the output intensity of the previous
cell. The attenuations (beam splitters), represented by the red circles,
are added to make all of the final output intensities equal. Adding
additional attenuations and phase shifts inside the unit cell, other
recurrence relations can be realized in Hilbert space.

the sorter, different sequences obeying the same recurrence
relation are produced, for example switching between the
Lucas and Fibonacci sequences. More generally, by nesting
multiple recursive trees inside each other, this gives access to
finite approximations of fractal states in Hilbert space. The
construction of such recursive chains of states allows the
possibility of carrying out information processing or other
tasks on these states in a relatively simple manner.

To give one application of the approach presented here,
consider taking multiple copies of the apparatus from Fig. 1
and feeding the output of each copy into the input of another
copy in a fractal manner as shown in Fig. 10. If Alice and
Bob both feed their half of a down conversion pair into such
an apparatus, the result is an implementation of an entangled
two-photon quantum walk in OAM space: the OAM values
of each photon can walk up and down the two chains shown
in Fig. 11. The OAM value can be thought of as the walk
variable, with the interferometers that choose between the C

and D states acting as the coin operators. (A quantum walk

In Out
F

C
D

C
D

C
D

=

Repeat basic unit
in fractal manner

FIG. 10. (Color online) The apparatus of Fig. 4 (with the detec-
tors removed) is abbreviated as a single unit, represented by the green
box (left side of figure). Multiple copies of this unit can be repeated,
with the output of each used as input to the next (right side). The
result is that the apparatus alternately switches between the L and D
bases.

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

C3 D3

C5 D5

C7 D7

C9 D9

C2 D2

C4 D4

C6 D6

C8 D8

L
B

asis
D Basis

FIG. 11. (Color online) The apparatus of Fig. 10 implements a
random walk. By alternating L and D measurements, each of the two
entangled photons can be made to walk randomly up and down one
of the two chains of states shown. The left-hand chain is constructed
from states |Fn〉 with odd index n, the right-hand chain is built from
states with even n. The |Cn〉 and |Dn〉 states are those that are detected
by the Cn and Dn detectors in Fig. 4.

in OAM space has recently been implemented by other means
in [25].)

VI. CONCLUSIONS

In this paper, we have introduced an interferometric method
for statistically distinguishing OAM superposition states both
from eigenstates and from other nonorthogonal superpositions.
In addition, the same essential method can be used to prepare
superpositions of optical OAM states. This ability to tailor
different superpositions of OAM states may be useful for a
number of applications in metrology and quantum computing;
in particular, it allows complex sets of states to be prepared
in a simple manner, allowing the possibility of carrying out
sophisticated information processing algorithms directly on
the Hilbert space of the system. Further, by replacing the OAM
sorters with devices that sort according to other degrees of
freedom, similar arrangements can be used for superpositions
of eigenstates of other operators. The systems described can all
be placed on integrated optical chips with current technology
or with that which will be available soon, allowing them to
be used to generate or detect relatively complex Hilbert space
structures in a simple and convenient manner.
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