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An entanglement-witness approach to quantum coherent-state key distribution and a system for its practical
implementation are described. In this approach, eavesdropping can be detected by a change in sign of either
of two witness functions: an entanglement witness S or an eavesdropping witness W . The effects of loss and
eavesdropping on system operation are evaluated as a function of distance. Although the eavesdropping witnessW
does not directly witness entanglement for the system, its behavior remains related to that of the true entanglement
witness S. Furthermore, W is easier to implement experimentally than S. W crosses the axis at a finite distance,
in a manner reminiscent of entanglement sudden death. The distance at which this occurs changes measurably
when an eavesdropper is present. The distance dependence of the two witnesses due to amplitude reduction and
due to increased variance resulting from both ordinary propagation losses and possible eavesdropping activity is
provided. Finally, the information content and secure key rate of a continuous variable protocol using this witness
approach are given.
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I. INTRODUCTION

The goal of quantum key distribution (QKD) is for two
participants (Alice and Bob) to generate a shared cryptographic
key of bits in such a way that quantum mechanics prevents
an eavesdropper (Eve) from obtaining significant information
about the key without being detected. QKD schemes [1,2]
based on the transmission of single photons or entangled pho-
ton pairs tend to be highly secure [3]. However, because single
photons can be easily absorbed or deflected, the operational
distances and key generation rates of these schemes are limited.
It is often desirable to instead use pairs of entangled coherent
states because individual-photon-level losses have little effect
on them. Along with this benefit comes the challenge of
revealing the action of eavesdroppers: it suffices for Eve
to obtain only a small fraction of the coherent-state beam
to measure the transmitted state. Moreover, although pairs
of entangled coherent states can be created [4,5], randomly
modulating them as needed for QKD is a nontrivial task.

Recently [6], a technique applicable to the detection of an
eavesdropper on a quantum optical communication channel
was proposed which involved phase entangling two coherent-
state beams by interaction with a single photon inside a
nonlinear medium. In that scheme, a beam splitter first puts a
photon into a superposition of two possible path states. A phase
shift is induced conditionally, depending on the path state, so
that the pair of beams becomes phase entangled. Alice and Bob
each receive one beam and make homodyne measurements to
determine its phase. The relative phase between the beams
determines the bit value to be used in the key. Effects due to
eavesdropping are made detectable by introducing additional
interferometers with controllable phase shifts σ1 and σ2 just
before each of the detectors, respectively. Interference terms
then appear in the joint detection rate as σ1 and σ2 are varied.
If the beams have not been disturbed in transit, the visibility
of this interference should be greater than 1√

2
≈ 70.7%,

suggesting stronger-than-classical correlations and violation
of a Bell-type inequality. If the visibility drops below 70.7%,
this could indicate that the beam has been tampered with.
This method, in principle, allows phase-entangled states to be
robustly distributed over large distances.

In this paper, we propose a technique for revealing eaves-
droppers in systems for quantum key-bit distribution. This
technique introduces entanglement in a manner similar to [6],
but uses a fundamentally different approach to eavesdropper
detection. Rather than using Bell violation for checking
security, the idea is to instead look for degradation or death
of entanglement due to Eve’s actions by using functions
designed to witness it [7,8]. The switch from measurements
of nonlocal interference associated with a Bell-type inequality
to direct entanglement-related witnesses provides substantial
benefits: it both expands the effective operating distance and
simplifies the required apparatus. The increase in operating
distance is due to the fact that Bell violation is a stronger
condition than entanglement. The particular entanglement
witness S [9] used is negative for all finite distances when the
coherent states propagate undisturbed; however, S changes
sign to a positive value in the presence of eavesdropping,
thus revealing Eve’s intervention. Another related witness
function W , which is more easily measured but does not
directly indicate entanglement in our system, can also serve
this purpose.

As in [6], which involves the Bell inequality, the main
goal of these functions is simply to reveal the presence of
eavesdropping on the line; when the eavesdropper’s signature
is observed, the communicating parties know to shut down
the line and seek another communication channel. The actual
bits either may be derived from the entangled phases or they
may arise from normal telecom approaches of modulating the
intense coherent states. In this sense, the goal is to provide a
“quantum tripwire” for practical use, as opposed to absolute
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security in the sense that the phrase is commonly used in QKD.
In other words, the basic idea is to take a more pragmatic
approach to communication by providing an extra quantum-
based layer of security to support highly efficient classical
communication. As a result, our primary goal is less general
and less difficult to achieve than other continuous variable
protocols [10–16] that have been proposed with the goal of
unconditional security in mind. Nonetheless, as discussed in
Sec. VII, the witness approach is used directly on the key-
bit transmitting system to provide security to fully quantum
communication as well.

It is because the witness S itself involves third-order corre-
lation functions, which may be inconvenient to implement
experimentally, that we also consider the second witness
function W . W is related by rescaling of the quadratures to a
well-known entanglement witness Ws [17,18], but is not in the
strict sense a true entanglement witness in the current context.
Despite this, it gives eavesdropper-detection results that match
well with those of S and has the additional advantage that it
is built from the covariance matrix of the system, which is
easily accessible experimentally. W starts from an initially
negative value, but then crosses the axis to positive values
at finite distance, both during free propagation and in the
presence of eavesdropping. This is closely analogous to the
phenomenon of entanglement sudden death (ESD) [19], in
which entanglement is lost after propagating a finite distance.
The crossing occurs at a distance that can be easily predicted
when there is no eavesdropping present. When eavesdropping
occurs, the curve of W versus distance shifts by a measurable
amount; in particular, there is a clear alteration of the distance
at which the sign changes, allowing for easy detection.

We will collectively refer to quantities which are mea-
surably altered by predictable amounts in the presence of
eavesdropping as eavesdropping witnesses; both the true
entanglement witness S and the additional function W are
examples of such functions. It is shown that the two give
consistent results for the distance over which the entanglement
becomes unusable for eavesdropper detection.

Throughout this paper, coherent-state quadratures will be
defined in terms of creation and annihilation operators via the
relations

q̂ = 1

2
(â + â†), p̂ = 1

2i
(â − â†). (1)

It should be noted that there are several other normalization
conventions that are common in the literature, with different
constants in front on the right-hand side. Accordingly, when
results from other authors are quoted in the following sections,
the form used here may differ from their originally published
forms by factors of two in some terms.

We begin in Sec. II by describing the entangled states
under consideration and their means of production. The
eavesdropping model assumed is described in Sec. III. There,
we model the eavesdropping procedure by introducing a
Gaussian cloner into the path of one of the coherent states.
We then introduce the entanglement witness S and analyze
its behavior in Sec. IV. In order to have a more convenient
experimental measure, we then introduce W in Sec. V, and
look in Sec. VI at some of its properties, with emphasis
on its behavior under eavesdropping. A discussion of some

information-related aspects in Sec. VII is then followed by a
brief discussion of the results in Sec. VIII.

II. PHASE-ENTANGLED COHERENT STATES

The apparatus for the proposed system is shown in Fig. 1(a).
A laser followed by a beam splitter produces a pair of optical
coherent states, each in state |α〉. As in [6], the coherent-state
subsystem pair initially produced in state |α〉A|α〉B becomes
entangled in an interferometer by coupling to a single photon.
A beam splitter first causes the photon state to enter a
superposition of two path eigenstates. Then, if the photon is
in the upper path state, beam B gains a phase shift 2φ due
to cross-phase modulation of the photon with that beam in a
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FIG. 1. (Color online) Schemes for phase-based coherent-state
key distribution with single-photon triggers. (a) Scheme of the current
paper. A beam splitter splits a laser beam into two beams in identical
coherent states (solid black lines); a phase shifter compensates for
the phase gained in the reflected state. A single photon also enters
a superposition of two path states (dashed red lines). Due to the
joint interaction of coherent state and the photon within Kerr media,
the beams enter an equal-weight superposition of product states of
pairs of oppositely phase-shifted coherent states. The specific form
of the detection unit will be different for each of the applications
to be discussed in the text. (b) Scheme of [6], with two additional
interferometers to test for Bell violations.
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nonlinear Kerr medium [20–25], whereas if the photon is in
the lower path state, then there is a phase shift of 2φ in beam A.
Finally, by adding another constant phase shift to each beam,
we can arrange the output to be in the entangled state,

|ψ〉 = N√
2

(|α+〉A|α−〉B + eiθ |α−〉A|α+〉B), (2)

where

|N |−2 = (1 + cos θe−4|α|2 sin2 φ) (3)

and α± ≡ αe±iφ . (For simplicity, we do not explicitly indicate
the single-photon states.) In the following, operators with
subscripts 1 and 2, respectively, will correspond to Alice’s
beam and to Bob’s beam.

Note that whereas ±φ are the phase shifts of the coherent
states within a given path state, θ is the relative phase between
the two joint path states of the photon. The value of joint
phase θ can be controlled by the experimenters: Keeping only
events in which the photon is detected at detector 1 leads
to θ = π , while events in which it exits at detector 2 lead
to θ = 0. (Other values of θ can be achieved if desired by,
for example, putting a piece of glass in one of the potential
single-photon paths.) If the interferometer lacks stability,
randomly varying phases in the single-photon paths could
lead to decoherence. But these photons could be kept on a
single bench in Alice’s laboratory and be well controlled to
prevent this. Fluctuations in the phases of the coherent states
|α±〉A|α∓〉B → |α±eiδφ1(t)〉A|α∓eiδφ2(t)〉B would be a more
serious problem because these are shared between laboratories
that may be widely separated. This random phase variation is
an independent source of entanglement loss, separate from the
entanglement loss due to amplitude decay and eavesdropping.
(We focus here on the latter, leaving the former to be discussed
elsewhere.)

Using homodyne detection, each participant can measure
the phase of his or her beam to determine the sign of its shift.
Because the shifts in the two beams are always opposite, this
is sufficient for Alice and Bob to obtain common key bits;
for example, if Alice has +φ and Bob has −φ, they can take
the common bit value to be 0, while the opposite case then
corresponds to 1.

Unfortunately, an eavesdropper may extract part of the
beam and determine the bit transmitted. Although this cannot
be prevented, it can be detected, so that Alice and Bob can
prevent key material from being compromised by shutting
down the communication line. Recall that for the purpose of
revealing Eve’s intervention, the proposal of [6] is to include
two additional interferometers [Fig. 1(b)], each coupling one
beam to another photon in order to detect nonlocal interference
for Bell inequality tests. That approach has at least two
limitations: (i) On the theoretical side, detecting Eve only
requires entanglement, which in practice may still exist even
when the Bell inequality is not violated [26]; thus, the setup
tests for a less than ideal property. (ii) On the experimental
side, simultaneous single-photon events are needed in three
independent interferometers. This low-probability triple co-
incidence in widely separated interferometers is a significant
practical limitation. The method given in the present paper
avoids this problem by removing the need for more than one
interferometer.

Because the amplitude of the input beam can be easily
tuned, the system can be adjusted to work at different operating
distances, potentially (as we see in the following sections) up
to distances of several hundred kilometers. Current technology
can realistically reach amplitudes |α| of up to 103–104 without
doing damage to the fibers or producing high amounts of
fluorescence and scattering; but for illustrative purposes of
future potential, we have included plots with values of up to
106 at some points in the following.

III. THE EFFECT OF EAVESDROPPING

To examine measures against eavesdropping, we consider
the case in which Eve attaches a Gaussian cloner [27] to one
of the beams, which we assume to be Bob’s. The cloner takes
an input beam and makes two copies that have the same mean
amplitude as the input. Eve keeps one beam and sends the other
on to Bob. But, inevitably, there is a net increase in the variance
of Bob’s beam that will indicate her presence. Moreover, the
more exact a copy Eve’s beam is (i.e., the lower its variance),
the larger the disturbance to Bob’s beam. Specifically, if σBj

and σEj (for j = q,p) are the added variances to Bob’s beam
and to Eve’s beam, in excess of the initial variance, then these
variance increases must satisfy [27]

σ 2
Bqσ

2
Ep � 1

16 , σ 2
Bpσ 2

Eq � 1
16 . (4)

For optimal cloning devices, the effect on the q and p

quadratures should be the same; henceforth, we therefore
assume that σ 2

q = σ 2
p ≡ σ 2 for all participants.

In addition to the increased variance, any cloning device
will involve additional input ports besides the one carrying the
state to be cloned. These will introduce additional unmeasured
fluctuations, converting a pure input state into a mixed output
state [27], consequently leading to a loss of coherence between
previously entangled states. We consider eavesdropping on
only one of the two channels because, given our empha-
sis on eavesdropper detection, this is the most advantageous
situation for Eve: placing cloners in both channels can only
make her situation worse by affecting Alice’s state as well.

A generic schematic of a Gaussian cloner is shown
in Fig. 2(a). In addition to the input beam to be cloned
(represented by annihilation operator âin = â2), there is an
input ĉin, assumed to be in a vacuum state, onto which the
clone is to be imprinted at output. One further input port
b̂in leads to an internal amplifier. We assume the specific
model of Ref. [28], realized in terms of two beam splitters
and a nondegenerate optical parametric amplifier (NOPA), as
in Fig. 2(b). There are three output beams: an ancilla (b̂out) and
two clones of the input state. One clone (âout) is sent on to Bob
and one (ĉout) is kept by Eve. The input-output relations for
the operators in the Heisenberg picture are [28]

âout = âin − e−γ

√
2

(ĉin + b̂†in), (5)

b̂out = −
√

2 sinh γ ĉ†in +
√

2γ b̂in − â†
in, (6)

ĉout = âin + e+γ

√
2

(ĉin − b̂†in). (7)
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FIG. 2. (Color online) A model of a Gaussian cloner [28] applied by Eve to Bob’s beam. The cloner can be realized by combining an
amplifier with a beam splitter. Besides the input from the source (ain), there are two additional inputs: one to the amplifier (bin) and the other
to the first beam splitter (cin). The result is two outputs with quadratures that have means equal to that of the input. One copy (aout) is sent on
to Bob. Eve keeps the other (cout) to make measurements on.

Here, the asymmetry between the two clones is measured by a
parameter ξ which has value ξ = ln 2

2 for the symmetric case.
Then, γ = ξ − ln 2

2 measures the deviation from symmetry.
The optimal case of γ = 0 produces fidelity Fa = Fc = 2

3 for
both clones. It is readily verified that the mean values at both
outputs are unchanged from the input, 〈q̂E〉 = 〈q̂ ′

2〉 = 〈q̂2〉 and
〈p̂E〉 = 〈p̂′

2〉 = 〈p̂2〉. It is also straightforward to show that the
variances satisfy

�q2
a,out = �q2

a,in + 1
4e−2γ , (8)

�p2
a,out = �p2

a,in + 1
4e−2γ , (9)

for the clone sent to Bob, and

�q2
c,out = �q2

c,in + 1
4e+2γ , (10)

�p2
c,out = �p2

c,in + 1
4e+2γ , (11)

for the clone kept by Eve. Due to the cloning procedure,
Bob and Eve each therefore gain added variances (beyond the
original variance of the beam in transit to Bob) of σ 2

B = 1
4e−2γ

and σ 2
E = 1

4e2γ , respectively.
In the Schrödinger picture, the cloner has the effect of

altering the state: a pure input state will be converted to a
mixed output with a probability distribution of width σ 2

B [27],
which will inevitably damage or destroy the entanglement of
the cloned state with Alice’s state.

Note that in Eqs. (8)–(11), the eavesdropper adds a fixed
amount to the variance (regardless of her position), while the
incoming variance itself increases with distance, due to mixing
with vacuum contributions as loss occurs. As a result, the
fractional effect she has is smaller and harder to detect at large
distances; but, at the same time, she gains less information,
since at larger distances she is measuring something that is
already more uncertain. The net result is that it is slightly
more favorable from Eve’s point of view for her to act closer
to the source than to act at larger distances. Therefore, in the
following sections, we will always assume that Eve is operating
very near the source.

IV. ENTANGLEMENT-WITNESS APPROACH

Recall that by using the Bell–Clauser-Horne-Shimony-Holt
(CHSH) inequality, the absolute value of the expectation value
of the Bell-CHSH operatorB, when properly applied, provides

a necessary and sufficient indication of the presence or absence
of entanglement for pure states. In that sense, the absolute value
|B| is the longest-used strong entanglement witness. Here, in
place of |B| falling below the critical Bell inequality value 2
as the indicator of loss of entanglement, we use the loss of
the negative-valuedness of an entanglement witness S that is
observable with a much simpler apparatus.

An entanglement witness is a quantity which is negative
whenever a system is entangled; in general, when it is non-
negative this is no longer the case and nothing can be said about
the entanglement or separability of the system. Entanglement
witnesses can often be based on the positive partial trace (PPT)
criterion of [7,29]. For continuous variables, the most common
such witnesses are formed from the second-order correlation
functions (i.e., on covariance matrices). These are extremely
useful because Gaussian states are completely determined by
their means and covariance matrices; as a result, such witnesses
often completely characterize the entanglement properties of
Gaussian states. In particular, some entanglement witnesses,
such as the function Ws mentioned in Sec. V, are both
necessary and sufficient conditions for entanglement when
applied to Gaussian states, being positive if and only if the
state is separable. Such witnesses are referred to as strong
witnesses.

However, covariance-based entanglement measures, which
do not take into account correlations among higher moments,
may not be fine enough a measure to detect entanglement in
non-Gaussian systems, so a number of higher-order entangle-
ment measures have been discussed in the literature [9,30–33].
These involve expectation values of operators formed from
products of more than two creation or annihilation operators
(or, equivalently, products of more than two quadrature
operators). Here we will consider one such measure, denoted
S, and show that it can detect the presence of eavesdropping:
when an eavesdropper acts, it will switch sign from negative
to positive values. Because S < 0 is only a sufficient and
not a necessary measure for entanglement—in other words,
S is not a strong witness—it cannot be said with certainty
that entanglement is lost when the sign changes. Whether or
not entanglement persists after the sign change is ultimately
beside the point for our current purpose: the sign change in any
case indicates the presence of an eavesdropper, which is our
goal. In addition, so long as the sign does remain negative, we
can say with certainty that the system remains entangled, and
that under an appropriate protocol it therefore remains secure.
If S < 0, then entanglement persists and communication can
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continue; but if S � 0, communication should be shut down
in order to assure security, even though there is a chance that
entanglement still persists.

The entanglement witness to be used here was introduced
in [9] and is defined by the determinant

S =

∣∣∣∣∣∣∣
1 〈â†

2〉 〈â1â
†
2〉

〈â2〉 〈â†
2â2〉 〈â1â

†
2â2〉

〈â†
1â2〉 〈â†

1â
†
2â2〉 〈â†

1â1â
†
2â2〉

∣∣∣∣∣∣∣ . (12)

Here, â1 is the annihilation operator at Alice’s location and â2

is the corresponding operator for Bob’s location. This witness
is valid for any state, Gaussian or otherwise, and when it is
negative, the state is guaranteed to be entangled. Because S
involves third-order correlations in addition to second and
fourth order, it is more difficult to measure experimentally,
although such measurements have been done [34]. The only
change of the setup from Fig. 1(a) is that the homodyne
detectors would be replaced by a more complex detection unit.

Given the explicit form of the entangled bipartite coherent
state |ψ〉 given in Eq. (2), S can be readily calculated. We find
the elements of the matrix at zero distance are

〈â†
2〉 = 〈â2〉 = α cos φ, (13)

〈â1â
†
2〉 = 〈â†

1â2〉 = α2|N |2(cos 2φ + e−4α2 sin2 φ), (14)

〈â†
2â2〉 = α2|N |2(1 + cos 2φe−4α2 sin2 φ), (15)

〈â1â
†
2â2〉 = α3 cos φ, (16)

〈â†
1â1â

†
2â2〉 = α4. (17)

It is straightforward to verify that S → 0 as α → 0 or α →
∞, while S < 0 at all finite values of α. All terms in the
determinant are proportional to α6, with additional amplitude
dependence coming from the exponential terms in Eqs. (14)
and (16); the latter terms are negligible except when α � 1.
For small φ, the terms in S nearly cancel, leaving S with a
small (negative) value. S → 0 continuously as φ → 0, i.e., as
the state becomes separable.

Distance dependence can be taken into account by replacing
the amplitude in each arm by α → αj (dj ) = αtj (dk), where
tj is a transmission function in the j th branch, for j = 1,2.
We assume that φ � 1 and αφ � 1 initially, but due to
losses, α will eventually decay to small values, at which
point the phase-space regions centered at αe±iφ may begin to
overlap, resulting in entanglement loss. For propagation losses
alone, the transmission functions are of the form tj (dj ) =
e− 1

2 Kj dj , with propagation distance dj in each arm. When these
losses are included, expressions of the form 〈âl

1â
†m
1 ân

2 â
†p
2 〉

are multiplied by factors of e− K
2 [(l+m)d1−(n+p)d2], while the

exponential terms in Eqs. (13)–(17) and in the normalization
constant given by Eq. (3) become exp(−4α2e− K

2 (d1+d2) sin2 φ).
Given this, the entanglement witness can be calculated as a
function of distance for various parameter values.

Plots of S versus distance are shown in Fig. 3 for several
parameter values. Two cases are shown: the case of equal
decay in both arms (Alice and Bob equal distances from
the source) and for decay in one arm only (Alice acting as
the source). Note that for the asymmetric case, S has been

FIG. 3. (Color online) (a) Behavior of entanglement witness S
as a function of distance, assuming that the amplitudes have decay
constants K = 0.046 km−1. Here, α = 100 and φ = 0.1. The red
dashed line assumes symmetric decay. The solid blue line assumes
that the source is in Alice’s laboratory, so that decay occurs only on
one side; the values in this latter case were magnified by a factor of
100 before plotting.

multiplied by 100 in Fig. 3(a) in order to display it on the
same scale as the symmetric case. As expected, S is initially
small and negative. As the amplitudes decay, the exponential
terms in Eqs. (14) and (15) start to become significant when
exp(−4α2e− K

2 (d1+d2) sin2 φ) becomes comparable in size to
cos 2φ. This signals the beginning of significant overlap
between the two phase-space regions in Fig. 4. At this point,
there is a negative dip in S, followed by an asymptotic decay
back toward zero, due to the decay of the overall α6(d)
dependence. The latter decay results from the regions of Fig. 4
approaching the vacuum state at the origin. Thus, the dips
occur at the point where the entanglement starts to become
unusable due to photon loss, and therefore signals the outer
limits of the distance at which the method is useful for the
given input parameters.

Note from the figure that although the large negative dip
is orders-of-magnitudes smaller when the decay is occurring
in only one arm, it occurs at roughly twice the distance.
The zero crossing of W will similarly be seen in the next
section to occur at twice the distance in the asymmetric
case. This is significant because it means that the mechanism

FIG. 4. (Color online) The larger distance of disentanglement for
the asymmetric case in Fig. 3 is due to the fact that the two coherent
states move apart in phase space, whereas in the symmetric case, both
decay toward the same vacuum state.
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FIG. 5. (Color online) Behavior of entanglement witness S as a
function of distance, with and without eavesdropping, for α = 1000
and φ = 0.1, assuming symmetric decay. The curves correspond to
no eavesdropping (solid red), γ = 0 (dashed green), γ = −1 (dash-
dotted blue), and γ = −2 (dotted black).

for eavesdropper detection will work over roughly twice the
distance in the asymmetric case. As shown in Fig. 4, the
entanglement loss is slower in the asymmetric case because
the two states may initially move apart as one of them
approaches the origin more rapidly than the other. In any
event, as will be seen in the next section, the dips in S occur at
roughly the location where the photon number has decayed to
the point where homodyne measurements become imprecise.
Thus, predictions beyond the beginning of these dips should
be considered meaningless. Henceforth, except when stated
otherwise, the figures in the remainder of this paper will be
plotted for the symmetric case versus total Alice-Bob distance,
d = d1 + d2; plotted this way, the asymmetric case shows only
minor differences, aside from a change of scale.

Replacing â2 in Eq. (12) by the output âout of a cloner, the
effect of eavesdropping on S can be evaluated. Examples of
the results are shown in Fig. 5. It is clear from the plots that
S < 0 in the absence of eavesdropping, but switches to S > 0
when Eve is present.

Since S is only slightly negative at most distances, it only
requires a small disturbance to tip it to the positive side of
the axis. The initially large size of the positive S values in
the presence of eavesdropping may seem surprising, but it can
be traced to its source: the large value of 〈â†

1â1〉 acts as a
multiplier, magnifying changes in S. To see this, note first that
if S is expanded out explicitly in terms of expectation values,
the only terms that change when the eavesdropper acts can be
written in the form

(〈â†
1â1〉 − 〈â†

1〉2)〈â†
1â1â

†
2â2〉. (18)

The terms in the parentheses can be written as 〈�q2
1 +

�p2
1 + i[p̂1,q̂1]〉, which is non-negative on general quantum

mechanical principles; for the specific states considered in this
paper, it can be written more concretely as α2 sin2 φ, which
is also clearly non-negative. Since this term is positive, S
will increase if the fourth-order term multiplying it increases.
With eavesdropping, the fourth-order term does increase
by an amount proportional to 〈â†

1â1〉e−2γ , which, in turn,
is proportional to Alice’s squared amplitude, α2. At small
distances, S is initially small and negative, but the amplitude
α is large, so that this term adds a large positive value to
the entanglement witness. In more physical terms, the cloner

transforms the initial pure state en route to Bob into a mixed
state, leading to a decrease in entanglement; the effect of this
loss on the witness is large because it is multiplied by the
coherent-state amplitude, which we explicitly assume to be
large. The loss of decoherence results from the fact that not
only are the phase-space regions in Fig. 4 larger, their locations
fluctuate relative to each other about fixed average positions
as a result of the uncontrolled relative phase fluctuations
introduced by the cloner.

V. AN EAVESDROPPING WITNESS

In analogy to an entanglement witness, we wish now
to introduce the concept of an eavesdropping witness. We
will define this to be an experimentally measurable function
of the system’s state which changes value in a predictable
manner whenever an eavesdropper acts on the system. Here
we will introduce such a measure that will give results closely
related to those of the entanglement witness S introduced in
Sec. IV. So this function will also witness eavesdropping, but
is much easier to measure. This eavesdropping witness W is
constructed from the covariance matrix of the system and will
change signs from negative to positive at a distance that can
be easily calculated. This distance changes in a predictable
manner when the system is interfered with, thus signaling the
presence of an eavesdropper.

Let q̂1,p̂1 be orthogonal quadratures for beam A and
q̂2,p̂2 be corresponding quadratures for B. Form the vector:
η̂(q̂1,p̂1,q̂2,p̂2). The covariance matrix V is defined as the
4 × 4 matrix with elements Vij = 1

2 〈{η̂i − 〈ηi〉,η̂j − 〈ηj 〉}〉,
where {. . . , . . .} denotes the anticommutator and angular
brackets denote the expectation value. V can be expressed
in terms of three 2 × 2 matrices as V = (A1 C

CT A2
). A1 and

A2 are the self-covariance matrices of each beam separately;
C describes correlations between the Ai . An eavesdropping
witness derived from the covariance matrix is then defined as

W = 1 + det V + 2 det C − det A1 − det A2. (19)

This function W is similar in form to an entanglement
witness Ws introduced in [17] and studied in detail in [18],
but due to the normalization differences mentioned in the
introduction, it is not the same function and so here is not
a true entanglement witness. W and Ws are, in fact, related
by a rescaling of the quadratures, but for the states considered
in this paper, Ws vanishes identically. It can be shown that for
Gaussian states, a system is entangled if and only if Ws < 0.
Ws , likeS, is based on the positive partial trace criterion [7,29];
however, because Ws is quadratic in the quadrature operators,
it is unable to detect some forms of entanglement that can be
detected by the quartic operator S. The vanishing of Ws on
the states used here is due to the fact that they are not strictly
Gaussian; however, we will make use in Sec. VII of the fact
that the non-Gaussian terms are small for large α.

Using an eavesdropping witness derived from the covari-
ance matrix, as W is, has distinct advantages, since V is
experimentally measurable via heterodyne detection and its
expected behavior with distance is straightforward to calculate.
So deviations from its expected distance dependence are
easily detected. The eavesdropper’s actions affect the various
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FIG. 6. (Color online) Eavesdropping witness W value vs Alice-
Bob distance d = d1 + d2. From left to right, the curves have
parameter values |αφ| = 10, |αφ| = 20, |αφ| = 50, |αφ| = 100,
|αφ| = 500, |αφ| = 1000, and |αφ| = 5000. K = 0.046 km−1 is
used for the 1550 nm telecom window. An expanded view of the
region enclosed in the dashed box is shown in Fig. 7.

covariances and moments of the states; the idea is to find a
function which distills these effects into a single number in a
useful way. Clearly, many such functions are possible, but we
examine here just one example.

Assuming loss rates K1 and K2 in each arm, the covariance
matrix is

V =
(

A′
1 C ′

C ′ T A′
2

)
=

⎛
⎜⎝

a′
1 0 b′ 0

0 a′
1 0 c′

b′ 0 a′
2 0

0 c′ 0 a′
2

⎞
⎟⎠ , (20)

where

a′
j (dj ) = |α|2

2
[|N |2f (θ,φ,dj ) − 1]e−Kj dj + 1

4
, (21)

b′(d1,d2) = |α|2
2

[|N |2g(θ,φ,d1,d2) − cos 2φ]

× e− 1
2 (K1d1+K2d2), (22)

c′(d1,d2) = |α|2
2

[|N |2g(θ,φ,d1,d2) − 1]e− 1
2 (K1d1+K2d2), (23)

with j = 1,2. Here we have also defined

f (θ,φ,dj ) = [1 + cos 2φ cos θe−4|α|2 sin2 φe
−Kdj

],

g(θ,φ,d1,d2) = [cos 2φ + cos θe−4|α|2 sin2 φe−(K1d1+K2d2)/2
].

(24)

The values of a′, b′, c′ at zero distance will be denoted by
a, b, c. Distance dependence also arises through N (d1,d2).
The entanglement witness is then

W = 1 + (a′
1a

′
2)2 + (b′c′)2 − (b′ 2 + c′ 2)a′

1a
′
2

+ 2b′c′ − a′ 2
1 − a′ 2

2 . (25)

Henceforth we assume that in both channels, the rate for
fiber loss is that of the 1550 nm telecom window, K1 = K2 ≡
K = 0.046 km−1, corresponding to 3 dB loss per 15 km.
Now we also, for the most part, express results in terms of
the total Alice-to-Bob distance, d = d1 + d2. In this manner,
the symmetric case (equal travel distances in both channels,

FIG. 7. (Color online) Expanded view of the region enclosed in
the dashed box in Fig. 6. The curves have parameter values |αφ| =
500 (dashed brown), |αφ| = 1000 (dotted violet), and |αφ| = 5000
(solid red). K = 0.046 km−1 is used for the 1550 nm telecom window.

d1 = d2) and the case where Alice generates the state in her
laboratory (d1 = 0, with no losses on her side) can both be
expressed in a unified manner. Plots ofW vs distance are given
in Fig. 6. W starts with large negative values at d = 0 and its
magnitude decays rapidly with distance due to propagation
losses. Close inspection shows that W crosses from negative
to positive values at finite distances (see the expanded version
in Fig. 7).

The exponential terms in f and g are negligible except at
large distances, by which point the α2(d) terms that multiply
them in Eqs. (21)–(23) have decayed away. As a result, these
terms can be neglected for most purposes. Dropping them, it is
then seen that all of the curves in Fig. 7 converge to a common
asymptote as |α| → ∞, located at W = (1 − a2)2 = ( 15

16 )2 ≈
0.8789.

VI. CROSSING THRESHOLDS

Entanglement sudden death (ESD) is the sudden loss of
entanglement in finite time—corresponding here to finite
distance—in contrast to the more common asymptotic loss
of entanglement due to decoherence [19,35,36]. Although, as
mentioned, the eavesdropping witness W is not an entangle-
ment witness, behavior analogous to ESD occurs here. The
point at which the axis is crossed moves in the presence
of eavesdropping and closely tracks features of the true
entanglement S witness discussed in Sec. IV; as a result,
the location of this crossing point can be used as a means
of eavesdropper detection.

For φ = 0, the matrix elements reduce to a = 1
4 and

b = c = 0, so we find that W = 1 − a4 − 2a2 = (1 − a2)2 =
( 15

16 )2 > 0, at all distances. But for nonzero φ, W changes sign

when |α(d)| =
√

15
4 csc φ. Solving for distance, we find that

the sign change occurs when the distance between Alice and
Bob is

d0 = 2

K
ln

(√
8

15
α sin φ

)
. (26)

These results are plotted in Fig. 8. Although here we restrict
ourselves to small φ, it may be noted in passing that, for fixed
α, the crossing distance is largest at φ = π

2 , i.e., when the
entangled states are |α〉 and |−α〉. As the distance formula
makes clear, crossing can always be made to occur at any
distance desired by choosing appropriate values of φ and α.
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FIG. 8. (Color online) The distance d0 at which axis crossing
occurs, as a function of the parameter |αφ| ≈ |α sin φ| for K =
0.046 km−1. The solid blue curve is the Alice-to-Bob distance. This is
the same as the source-to-Bob distance for the case of loss in only one
arm (source in Alice’s laboratory), and is double the source-to-Bob
distance for case of equal distances in both branches (dashed red
curve).

Let us now consider the effect of eavesdropping on W .
The variances on the diagonal of A2 are increased by 1

4e−2γ ,
so the crossing distance is now altered in the presence of
eavesdropping to the value

d(γ ) = 2

K
ln

[√
8

15

(
1 − 1

15
e−2γ

)−1

α2 sin2 φ

]
. (27)

Here, d(γ ) becomes complex for γ < γ0, where γ0 ≡
− 1

2 ln 15 ≈ −1.3540. So for eavesdropping parameters below
γ0, there is no crossing and W is always negative. This
lack of axis crossing provides a clear and unambiguous
signal of eavesdropping. For γ > γ0, the crossing distance
becomes finite, starting at large values and decaying rapidly
to d0 as γ increases (Fig. 9). Since the ratio of Eve’s added
variance (beyond the vacuum value) to Bob’s added variance,

r = σ 2
E

σ 2
B

= e4γ , increases exponentially with γ , the shift in
crossing point is large (or infinite) for parameter values where
Eve can measure the quadratures with precision (large negative
γ ). The shift only becomes too small to detect exactly in the
region where Eve’s variance is too large for her to extract
an accurate measurement (positive γ ). This is illustrated in

FIG. 9. (Color online) The solid blue line is the distance d(γ ) (in
kilometers) between Alice and Bob at which W crosses the axis, as
a function of eavesdropping parameter γ . The amplitude and phase
values assumed are α = 105 and φ = 0.1. The dashed red line shows
the distance d0 in the absence of eavesdropping.

FIG. 10. (Color online) The ratio of added variances for Bob and

Eve, r = σ 2
E

σ 2
B

, is plotted vs γ , for φ = 0.1. The curve is independent

of α.

Fig. 10, where r is plotted versus γ . By the time the shift in
crossing point is reduced to 1 meter in size, Eve’s variance
is 2.2 times that of Bob’s variance; by the time �d drops to
0.5 meters, the added variance ratio grows to r = 8.6 (see
Fig. 11).

The average number of photons in a coherent state is related
to the amplitude by 〈n〉 = α2, so if the amplitude is decaying
as α(d) = αe−Kd/2, then the distance D1 at which the number
of photons decays to roughly one is

D1 = 2

K
ln α. (28)

More generally, the distance at which the number has decayed
to 〈n〉 = N is

DN = 2

K
ln

(
α√
N

)
. (29)

Unless φ is relatively large (of the order of 0.1 or more),
the points at which the curves cross the axis tend to be in
the regions where a small number of photons remain in the
beam, making homodyne or heterodyne measurements at
those points imprecise. As a result, it is advantageous instead
to look at the distances at which the W curve crosses some
negative value , instead of the distance where it crosses
zero. Let the distance at which W =  be d(γ,). In the

Δd

100 200 300 400 500

0

0

-4000

-1000

-2000

-5000

-3000

FIG. 11. (Color online) The curves shift horizontally by approxi-
mately a constant amount �d(γ,) in the presence of eavesdropping.
Here the solid red line is in the absence of eavesdropping for α = 1000
and φ = 0.1. The dashed blue line is in the presence of eavesdropping
with γ = −1. The crossing of the W =  line can be used instead
of the W = 0 crossing; this allows more photons to still be present
for measurement, increasing measurement accuracy.
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FIG. 12. (Color online) The change �d in the distance at which
the curve of W crosses the value W is plotted vs the eavesdropping
parameter γ , for the values  = −1 (dashed blue) and  = −10
(solid red). The curves are independent of α and change very little
for  < −10. The value φ = 0.1 was used for the plots.

absence of an eavesdropper, the distance would be d(∞,),
so that the distance that this crossing moves in the presence
of eavesdropping is �d(γ,) = d(γ,) − d(∞,). It is
straightforward to show that

d(γ,) = 2

K
ln

[
α2 sin2 φ

F (γ ) − 
F (γ )

]
, (30)

�d(γ,) = 2

K
ln

[
15
16 − 16

15

F (γ ) − 
F (γ )

]
, (31)

where F (γ ) ≡ 15
16 (1 − 1

15e−2γ ). This shift is independent of the
initial value of α and varies only very slowly with . The value
of  used can be chosen as appropriate for the given experi-
ment to ensure that there are still sufficient numbers of photons
remaining in the beam for accurate homodyne measurements.
The size of this shift for the particular values  = −1 and
 = −10 is shown in Fig. 12. For more negative values of ,
the curves are nearly indistinguishable from that of  = −10.

Finally, in a fully practical setting, the easiest approach
would be to monitor changes of W at a fixed distance, rather
than move the detector around to find a fixed value ofW . Since
the expected value of W in the absence of eavesdropping is
readily calculable, this is equivalent to the approach described
here.

VII. INFORMATION AND SECRET-KEY RATE

Although the primary goal in this paper is to use entan-
glement in the phase in order to detect eavesdropping on a
classically modulated channel, rather than to use the entangled
phase for encryption or encoding itself, we briefly consider
here other possibilities which are available in case a full
quantum key distribution is desired.

In particular, the same setup can be used to generate a key
from the homodyne measurements themselves. The possible
phase values measured by each participant can be divided
up into bins and the bin in which a measurement falls then
determines a value for the key. In this situation, the mutual
information between the participants and the eavesdropper is
relevant to determining if it is possible to distill a secret key.

With a sufficient number of bins, the phase variable can still
be treated as approximately continuous.

The secret-key rate is given by

κ = I (A : B) − I (B : E), (32)

where I (A : B) and I (B : E) are, respectively, the mutual
information between Alice and Bob and between Bob and
Eve. The mutual information is simply the difference between
the von Neumann entropies of the individual subsystems and
the total two-beam system, Svn = −Tr [ρ ln ρ]; for example,
I (A : B) = Svn(ρA) + Svn(ρB) − Svn(ρAB). If K > 0, then it
is possible to distill a secret key via privacy amplification. If
the difference in Eq. (32) is negative, then κ is taken to be
zero. The mutual information can be calculated numerically
from the density operator of the system. However, an ap-
proximate but simpler and more transparent evaluation can
be obtained by noting that the system in question can be
treated as an approximately Gaussian system for small φ. This
can be seen, for example, by calculating the characteristic
function (the Fourier transform of the Weyl operator) or the
Wigner function of the system. The characteristic function, for
example, is of the form

γ (λ,ζ ) = 1

2
e− 1

4 (|q1+iζ1|2+|q2+iζ2|2)

×
∫

d2λd2χe−(2|α|2+|λ|2+|χ |2)

×e
i
2 [(q1+iζ1)λ∗+(q2+iζ2)χ∗+(q1−iζ1)λ+(q2−iζ2)χ ]

×(eα(λr+χr ) cos φ+2α(λi−χi ) sin φ

+ eα(λr+χr ) cos φ+2α(χi−λi ) sin φ

+ eα(λr+χr ) cos φ+2iα(χr−λr ) sin φ

+ eα(λr+χr ) cos φ+2α(χr−λr ) sin φ). (33)

Here, subscripts 1 and 2 label Alice’s and Bob’s sides, while
subscripts r and i label the real and imaginary parts. Because
of the terms in the last large parentheses, γ is a sum of
four Gaussians. But when φ is small, the sine terms in the
exponentials become negligible compared to the cosine terms,
leaving all four of these terms equal. The only case when
this argument breaks down is when the differences χi − λi or
χr − λr are large; however, this part of the integration range is
strongly suppressed by the term e−(2|α|2+|λ|2+|χ |2) in the second
line. Thus, to a high degree of accuracy, we can treat the
system as Gaussian. This approximation becomes better as
the distance becomes large and the amplitudes decay to small
values, which is exactly the region of greatest interest to us.
We therefore compute all information-related quantities in the
Gaussian approximation.

For a two-mode Gaussian state, the mutual information
can be obtained directly from the covariance matrix. Define
the binary entropy function h(x) = (x + 1

4 ) ln(x + 1
4 ) + (x −

1
4 ) ln(x − 1

4 ) and the discriminant of the covariance matrix
� = det(A) + det(B) + 2det(C). Then the quantum mutual
information is [37,38]

I (A : B) = h(
√

det(A)) + h(
√

det(B)) − h(d+) − h(d−),

(34)
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FIG. 13. (Color online) Mutual information between Alice and
Bob, assuming both have the same initial amplitude α. From the
top line downward, the initial amplitudes are α = 105 (red), α = 104

(violet), α = 103 (black), and α = 100 (blue). φ = 0.1 for all curves.

where the symplectic eigenvalues of the covariance matrix are

d± =

√√√√� ±
√

�2 −
√

�2 − 4det(V )

2
. (35)

Plots of the mutual information between Alice and Bob in
the absence of eavesdropping in Fig. 13. In the presence of
eavesdropping, examples are shown in Fig. 14. As would be
expected, the mutual information they share decreases as γ

decreases, i.e., as Bob’s variance increases and Eve’s drops.
Because of the relation between Bob’s variance and Eve’s
variance, it can be noted that the mutual information between
Alice and Eve is given by the same formula, but with the sign
of γ reversed. This makes calculating the secret-key rate very
simple and leads to results such as those shown in Fig. 15. The
key rate remains positive as long as γ > 0, which is equivalent
to saying σ 2

E > σ 2
B . It should be noted that the distances at

which the information approaches zero are roughly equal to
the distances at which S became small in Sec. IV. Since
γ = 0 corresponds to σ 2

E = 1
4 , it follows that the maximum

allowed noise in the system for arrangement to remain secure
is σ 2

noise < 1
4 .

FIG. 14. (Color online) Mutual information between Alice and
Bob in the presence of eavesdropping, assuming they have equal
initial amplitudes and equal losses. Solid red curve: no eavesdropper.
Dotted black curve: γ = −1. Dash-dotted green curve: γ = 0.
Dashed blue curve: γ = 1. The values φ = 0.1 and α = 1000 were
used for all curves. The same curves give the mutual information
between Bob and Eve, but with γ and −γ interchanged.

FIG. 15. (Color online) Secret-key rate κ between Alice and Bob
in the presence of eavesdropping, assuming they have equal initial
amplitudes and equal losses. Solid red curve: no eavesdropper. Dotted
black curve: γ = 2. Dashed blue curve: γ = 1. Dash-dotted green
curve: γ = 0. κ vanishes identically for all γ � 0. The values φ = 0.1
and α = 1000 were used for all curves.

As an interesting aside, up to this point, although different
amounts of loss were allowed in Alice’s and Bob’s channels
due to different propagation distances, it has always been
assumed that the initial amplitudes were equal for both lines.
If we allow different initial amplitudes α and β, respectively,
for Alice and Bob, then the information decreases more slowly
with distance (Fig. 16). The reason for this is similar to the
explanation given earlier (see Fig. 4) for the greater distance
in the presence of asymmetric decay.

VIII. CONCLUSIONS

We have analyzed the effects of loss and eavesdropping
in a system for distributing key bits via entangled coherent
states over long distances. We have demonstrated that when
combined with the entanglement-witness or eavesdropping-
witness approach, the entangled coherent-state scheme de-
scribed here can, in principle, be used to detect eavesdropping
over distances on the order of hundreds of kilometers.

Besides differing conceptually from previous approaches,
our results for coherent-state QKD based on the use of an
entanglement and eavesdropping witnesses for eavesdropper
detection offer distinct advantages over the use of a Bell-type

FIG. 16. (Color online) Mutual information between Alice and
Bob, assuming they have different initial amplitudes α and β. From
the right to left, Bob’s initial amplitudes are β = 105 (red), β = 104

(violet), β = 103 (black), and β = 100 (blue). φ = 0.1 and α = 100
for all curves.

012315-10



ENTANGLED-COHERENT-STATE QUANTUM KEY . . . PHYSICAL REVIEW A 89, 012315 (2014)

inequality for that purpose. In particular, comparing the
above results with those in [6], we see that sign changes
of W always occur at larger distances than the loss of Bell
nonlocality resulting from the same external interventions
on the induced coherent states. Hence, W , as well as S, is
available for eavesdropping detection over larger distances
than the Bell-type inequality of the proposal in [6], extending
the range of distances in which the phase-entangled coherent
states are known to be useful for QKD: simulations in
[6] showed the Bell inequality method to be useful up
to distances on the order of tens of kilometers, while the
method discussed below has promise to extend the range
to the order of several hundred kilometers. Moreover, the
entanglement-witness method requires only a single trigger
photon, rather than the triple-coincidence trigger required
for testing the Bell-type inequality, a substantial practical
improvement.

Of the two eavesdropping witnesses, one (W) is straight-
forward to implement experimentally, while the other (S)
provides a rigorous measure of entanglement loss in the
presence of eavesdropping. The question remains as to whether
there is some other measure that provides both features for this

system: a true entanglement witness that is readily accessible
experimentally. It would be of particular interest to find a
strong entanglement witness that would serve this purpose. In
any case, the general idea of using an entanglement witness
or some related function as an eavesdropping witness or
quantum tripwire for eavesdroppers can certainly be exported
to communication systems beyond the specific entangled
coherent-state system considered here.

Finally, we have shown that the method is potentially useful
up to distances of hundreds of kilometers, in contrast to
methods based on single-photon communication which are
restricted to distances of tens of kilometers at most. It remains
to be seen if the method may be combined with the use of
quantum repeaters [39] in order to extend the working distance
to even greater lengths.

ACKNOWLEDGMENTS

This research was supported by the DARPA QUINESS
program through U.S. Army Research Office Award No.
W31P4Q-12-1-0015. We would like to thank Prof. N.
Lütkenhaus for a very helpful discussion.

[1] C. H. Bennett and G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems, and Sig-
nal Processing, Bangalore, India (IEEE, New York, 1984),
pp. 175–179.

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).
[4] B. C. Sanders, Phys. Rev. A 45, 6811 (1992).
[5] D. A. Rice, G. Jaeger, and B. C. Sanders, Phys. Rev. A 62,

012101 (2000).
[6] B. T. Kirby and J. D. Franson, Phys. Rev. A 87, 053822 (2013).
[7] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 (1996).
[8] Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.

Lett. 84, 2722 (2000).
[9] E. Shchukin and W. Vogel, Phys. Rev. Lett. 95, 230502 (2005).

[10] T. C. Ralph, Phys. Rev. A 61, 010303(R) (1999).
[11] M. Hillery, Phys. Rev. A 61, 022309 (2000).
[12] M. D. Reid, Phys. Rev. A 62, 062308 (2000).
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