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Single-photon sources represent a fundamental building block for optical implementations of quantum
information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution
quantum measurement. In this paper, in order to compare the effectiveness of different designs, we introduce
a single-photon source performance index, based on the maximum probability of generating a single photon
that still guarantees a given signal-to-noise ratio. We then investigate the performance of a multiplexed system
based on asymmetric configuration of multiple heralded single-photon sources. The performance and scalability
comparison with both currently existing multiple-source architectures and faint laser configurations reveals an
advantage the proposed scheme offers in realistic scenarios. This analysis also provides insights on the potential
of using such architectures for integrated implementation.
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I. INTRODUCTION

The ideal source of single-photon quantum states is a key
instrument for successful implementation of many exciting
quantum information topics ranging from the schemes to
probe foundations of quantum mechanics to super-resolution
measurements and quantum metrology. Single-photon sources
(SPSs) also represent a key resource for optical quantum
computing and quantum communication. Optical quantum
computers based on integrated photonic technology [1–4] can
be built using linear optics and SPSs as shown by Knill,
Laflamme, and Milburn [5]. In reality, specific designs that
offer only some approximation of an ideal source can be
achieved. For example, the current quantum key distribution
(QKD) systems use weak laser pulses in place of single-
photon sources [6–10] and a decoy state technique [11,12]
to avoid the photon number splitting (PNS) attack [13] on
the pulses containing more than one photon. The development
of a scheme for producing true single-photon states would
guarantee that all pulses contain one and only one photon
thus allowing one to increase the key generation rate and to
avoid any PNS attack. This challenging task has generated
extensive efforts that lead to an appearance of multiple designs
of heralded sources of single-photon states.

The single-photon source usually used in quantum infor-
mation applications consists of a faint laser (FL), namely an
attenuated and pulsed laser source.1 For a coherent source the
number of photons in each pulse can be modeled by a Poisson
random variable. The probability of having k photon in each
pulse is given by

Pk = μk

k!
e−μ, (1)

where μ is the mean number of photons in each pulse that
depends on the power of the laser. Two indexes are usually
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1The use of pulsed driving electric fields allows one to limit the

temporal interval when the photons are expected to exist thus reducing
the impact of detector dark counts.

employed in order to evaluate the output quality of the
source: the one-photon probability P1 and the signal-to-noise
ratio:

SNR := P1

1 − P0 − P1
= μ

eμ − 1 − μ
. (2)

The SNR is the ratio between the one-photon probability
and the probability of having more than one photon in the
output of the system. This index quantifies a critical quantity
of the source: the number of multiple photons per pulse. In
optical quantum computing this leads to errors whose effects
are hard to detect and correct while in QKD it opens a
possibility for PNS attacks. The main limitations of the FL
source stems from the fact that μ is the only tunable parameter.
This induces a trade-off: The value of μ that maximizes
P1 is given by μ = 1 and corresponds to a value of the
one-photon probability of e−1 � 0.37. However, for μ = 1
the SNR is equal to (e − 2)−1 � 1.39, a value that is typically
unacceptable for applications requiring a single-photon source.
Since the SNR is unbounded for μ approaching zero, the mean
photon number is usually kept sufficiently low in order to avoid
multiphoton events, thus reducing also the overall probability
of single-photon emission.

Several types of architectures with multiple heralded SPS
have been proposed in order to overcome such natural limi-
tations of the FL source. Photons are often generated in such
devices by means of spontaneous parametric down-conversion
(SPDC). In this nonlinear process an intense laser pump
impinging on a nonlinear crystal leads to probabilistic emission
of entangled pairs of photons (usually called signal and idler)
into two different spatial modes, with their rate depending on
the pump intensity, the nonlinear coefficient value, and on the
length of the crystal. It is then possible to “herald” the presence
of a photon in the signal mode by detecting the correlated twin
photon in the idler mode. A heralded single-photon source
based on SPDC with an overall heralding efficiency of 83%
has been demonstrated very recently [14].

The scheme based on multiple heralded SPSs combined
with the use of postselection has been originally proposed by
Migdall [15] in order to enhance the probability of obtaining
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a single heralded photon. This implementation requires one to
use the m-to-1 global switch. In the same work, the perfor-
mance of the proposed scheme has been studied considering
the finite detection efficiency. However, as pointed out in [16],
an efficient implementation of such a device is not currently
available, and it would be hardly scalable. To overcome these
problems a symmetric scheme, employing a total of m − 1
binary polarization-switching photon routers arranged in a
modular tree structure has been proposed by Shapiro and Wong
in [16]. They also considered the probability of emitting n

photons taking into account the imperfectness or real detectors
and optical switches. An experimental implementation of the
scheme along with an essential discussion of its scalability
has been pursued in [17] using four crystals. Recently, the
analysis of multimode emission in SPDC used for SPS was
carried out [18].

However, despite the recent theoretical and experimental
improvement of single-photon sources, a thorough analysis of
the performance of multiple heralded SPS in the presence
of finite efficiencies, and their comparison with respect
to a simple faint-laser source, is lacking: Nonetheless, it
appears to be a crucial step in assessing their potential,
especially in light of the experimental difficulties reported
in [17]. In pursuing this analysis, we believe that one of
the most delicate points consists in devising proper perfor-
mance indexes, ensuring a fair comparison between different
methods.

After reviewing the main ideas and theoretical results
underlying the existing SPS architectures, we will present our
results and performance analysis tools. In particular, the main
results of our paper are the following:

(1) We introduce a performance index for single-photon
sources to compare the effectiveness of different designs, i.e.,
the maximal single-photon probability achievable while guar-
anteeing a given signal-to-noise ratio. This index represents a
fair way to compare the performances of general single-photon
sources, regardless of the architecture or main principles these
may rely on.

(2) We demonstrate that the heralded symmetric archi-
tecture proposed in [16] suffers from a scalability problem:
Increasing the number of crystals beyond a certain value,
depending on the detection efficiency and the router transmis-
sivity, is detrimental to the performance. No previous analysis
demonstrated this problem.

(3) We propose an asymmetric heralded scheme, and
demonstrated that its performances always improve by increas-
ing the numbers of crystals.

(4) We develop a comprehensive comparison between
the symmetric and asymmetric configurations demonstrating
that the asymmetric architecture outperforms the symmetric
scheme in a large and, most importantly, experimentally
relevant region of the parameter space.

II. PERFORMANCE INDEX FOR
SINGLE-PHOTON SOURCES

In this section we present the key ideas underlying a class
of source architectures that outperform the FL scheme and
introduce a performance index for comparing different single-
photon sources.

A. Multiple sources and the advantage of postselection

The building block of such architectures is represented
by the so-called heralded source (HS). The HS exploits the
SPDC effect on a nonlinear crystal pumped with a strong
coherent field, which leads (with a certain probability) to
the simultaneous generation of a pair (or more pairs) of
photons: If the duration of the pulse (�tp) is much shorter
than the measurement time interval (�T ), but much greater
than the reciprocal of the phase-matching bandwidth �ω,
i.e., �T � �tp � 1/�ω, the statistics of the pairs is still
Poissonian [16]. One photon (the idler) of the pair is then fed
to a photon detector, while the other photon is used as signal.
The HS can be employed in multiple crystal strategies that
outperform the FL by exploiting the parallel use of HS units
and postselection strategies: Intuitively, the advantage of using
a scheme exploiting a parallel implementation lies in the fact
that the intensity of the pump of each crystal can be kept low,
suppressing thus the multiphotons events, while keeping an
acceptable production rate of single photons.

Let us assume for now to employ ideal detectors in order to
illustrate in a simple setting the potential advantages offered
by this system. The case of finite efficiency will be discussed
later in this section. We here consider standard single-photon
APD detectors only able to discriminate between the case of no
incident photons and the case in which photons are detected,
without resolving their number. When a detector is hit by the
photons, it returns an electric signal (trigger), which indicates
the presence of at least one photon in the signal channel.

Let us consider a multiple crystals heralded source architec-
ture with postselection (MHPS) built as follows (see Fig. 1):
an array of m HS units, labeled with index i = 1, . . . ,m, and
each one simultaneously fed with a laser pulse with intensity
such that the mean number of produced pairs is μ̃. For each
HS unit, the idler photon is used as a trigger and the other
is injected into an optical switch. The optical switch selects,
depending on the triggers, which signal channel must be routed
to the global output.

As first proposed in [15] we use the following strategy
for the switch: The output signal is taken from the first source
(starting from i = 1) that triggers (thus indicating the presence
of at least a photon in the channel). If all the detectors do not
fire there are no photons in the signal channel. It is worth
noting that the precise structure of the switch is not important

NLC

μ μ μ μ

N

O.S.

APD

NLC NLC NLC

FIG. 1. (Color online) Schematic of the MHPS scheme. The
rectangles labeled with NLC represent the nonlinear crystals, the
detectors are labeled with APD, and the rectangle labeled with O.S.

represents the optical switch.
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in this ideal situation. In fact, any switch that selects a channel
when at least the corresponding HS has triggered could be
used without altering the performances. We will see in the
next section how different selection rules affect crucially the
performances once the nonideal situation is kept into account.

The probability of having n photons in the global output of
the MHPS is given by (see Appendix A for its derivation)

Pn = μ̃n

n!
e−μ̃ 1 − e−mμ̃

1 − e−μ̃
(1 − δn) + δne

−mμ̃. (3)

In the previous expression δn is the Kronecker Delta (δ0 = 1
and δn�=0 = 0).

In particular, the single-photon emission probability and
the SNR are given by

P1 = μ̃e−μ̃ 1 − e−mμ̃

1 − e−μ̃
, SNR = μ̃

eμ̃ − 1 − μ̃
. (4)

Notice that, when μ̃ = μ, the signal-to-noise ratio is equal to
the SNR of the faint laser, while the single-photon probability
P1 is always larger.

B. Proposed performance index

As we have stated previously, in many applications it is
crucial to be able to rely on a threshold value for the SNR. With
this in mind, we propose the following method to compare
different single-photon sources: we fix a threshold value for
the acceptable SNR, �, and by varying μ we compute the
maximum of the one-photon probability P1 provided that the
SNR has a greater or equal value than �, namely,

P 1(�) = max
μ, SNR��

P1(μ). (5)

From now on, P 1 always indicates this optimized probability
with the SNR constraint. We note that, since the value of
the SNR in Eq. (4) is between 0 and +∞, by choosing the
appropriate value of μ, any value of the SNR can be achieved.
In Fig. 2 we show the maximized one-photon probabilities
of different MHPS schemes in the function of the guaranteed
SNR.

The benefits of the MHPS with respect to the FL are
apparent: At any fixed SNR level, it is possible to obtain a
higher value of the one-photon probability with MHPS. This
is because of the postselection procedure, that can turn (with
a certain probability) events in which more than one detectors
trigger at the same time into an event that corresponds to a
one-photon output by blocking the output of all the HS units
but one.

Faint Laser
m 4

m 8
m 16

Guaranteed SNR
1 5 10 15 20 25 30

0.2
0.4
0.6
0.8
1
P1

FIG. 2. (Color online) One-photon probability P 1 for the faint
laser and the MHPS scheme, with m = 4,8, and 16 in the function of
the guaranteed SNR.

C. Finite efficiency and symmetric modular architecture

Any discussion regarding the physical implementations
would be vain without taking into account the realistic
efficiencies in detection and routing of the produced photons.
An actual detector, in fact, is subject to losses whose effects
are usually described by introducing a parameter 0 � η � 1,
called detection efficiency, that represents the probability of
detecting an incident photon. This parameter takes into account
also the collection efficiency due to the phase matching
relation.

Physical implementation of postselection rules are subject
to losses as well. The efficiency in transmission is modeled
with a parameter 0 � γ � 1, called transmissivity, that rep-
resents the probability of transmission for a photon through
the router. It is important to note that this limited efficiency
is referred only to the transmission of the photons: For what
concerns the transmission of the electrical signal we are always
going to assume that, once a trigger happens, it is transmitted
until the end of the transmission chain without errors.

We remark that, in order to consider the role of a finite trans-
missivity, it is key to specify the particular routing/switching
architecture that is being considered, since the potential gain
with respect to an FL (without the routing inefficiencies) will
in general depend on it. This is not the case in the ideal scheme
described in the previous section.

In what follows we are going to briefly review a modular
architecture, proposed in [16], that employs binary photon
routers (2-to-1). The m-HS units are arranged as shown in
Fig. 3: The outputs of the first stage are fed into the second
stage’s routers and so on, until the end of the transmission
chain. This architecture can be clearly realized only for
m = 2k , with k ∈ N. It is worth noting that any successfully
transmitted photons have to pass trough k = log2 m routers.
We will call this scheme symmetric multiple-crystals heralded
source with postselection (SMHPS). Each binary router selects
the right signal channel only when the left HS has not triggered
and the right HS has triggered: In all other cases it selects the
left signal channel. The overall effect of the routers is that, if
more than one detectors fire, the channel routed to the end of
the chain is the one coming from the crystal corresponding to
the lowest i. Differently from the scheme proposed in [16], if

γ

γ γ

N̂

η η η η

NLC NLC NLC NLC

μ̃

γk

μ̃

γk

μ̃

γk

μ̃

γk

FIG. 3. (Color online) Schematic of the SMHPS scheme pro-
posed in [16]. The rectangles labeled with NLC represent the
nonlinear crystals, the detectors are labeled with η and the squares,
labeled with γ , are the photon routers.
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no detectors fire, the first channel is routed to the end: In fact,
even in this case, there is some probability, due to detection
inefficiency, that a photon is generated and it is convenient to
route one channel to the end. With this choice the SMHPS
always outperforms the faint laser.

Let us consider that each HS produces a mean number of
pair given by μ̃/γ k: We use this convention to compensate
the γ k factor arising from the binary switch transmission. As
shown in Appendix A, the probability of having n photons in
the final output is

P S
n = [(1 − η)μ̃]ne−(1−η)μ̃

n!
e
−ημ̃ 2k

γ k

+ μ̃ne−μ̃

n!

1 − (1 − η)ne
−η( 1

γ k −1)μ̃

1 − e
−η

μ̃

γ k

(
1 − e

−ημ̃ 2k

γ k
)
. (6)

The first term in the previous sum accounts for the probability
of having some photons in the output when no detector fired.
We notice that, in the ideal case of η = γ = 1 we obtain
Eq. (3), while in the limiting case of null detection efficiency
η, we obtain the faint laser source with mean photon number
μ̃: The latter property is related to the choice of routing the
first channel to the global output when no detectors fire. We
will postpone the performances comparison of SMHPS with
the FL in Sec. IV.

III. PROPOSED ASYMMETRIC ARCHITECTURE

In all the previous works, it was assumed that all the crystals
in the symmetric architecture were driven with the same
intensity. In Appendix B we will prove that this symmetric
choice represents a suboptimal case for the one photon
probability. In fact, even if the architecture is symmetric, an
asymmetry comes from the binary switcher: The left source
is initially checked and, only if this source doesn’t trigger,
the switch considers the right source. This asymmetry can
be turned in a resource to increase the one-photon output
probability: We here propose an asymmetric scheme which
is scalable in the number of crystals and that performs better
than the SMHPS in many situations of experimental interest,
still being suboptimal in exploiting the available resources.

Let us suppose having an array of the m-HS system arranged
asymmetrically as Fig. 4. This scheme also employs the same
kind of binary switches but the multiplexing is performed in
a different way with respect to the symmetric configuration:
The output of an m-source block is obtained by combining the
output of a block with m-1 sources with the output of an mth
source. An evident advantage with respect to the symmetric
configuration is the possibility of adding a single HS without
the constraint of having 2k crystals.

In this new configuration each successfully transmitted
photon passes through a number of photon routers ki that
depends on which crystal it has been created from:

ki =
{

i, if i � m − 1

m − 1, if i = m.
(7)

Since each channel is subjected to a different attenuation, we
again compensate the different absorption rates by choosing
μi (the mean number of the generated pair of the ith crystal)

γ

γ

γ
γ

N̂

η η η ηη

μ̄

γ

μ̄

γ2

μ̄

γ3

μ̄

γm−1

μ̄

γm−1

NLC NLC NLC NLC NLC

FIG. 4. (Color online) Schematics of the AMHPS. Notice that
each crystal is fed with different intensities to compensate for the
different absorption rate of different channels. The rectangles labeled
with NLC represent the nonlinear crystals, the detectors are labeled
with η, and the squares, labeled with γ , are the photon routers.

as

μi = μ̄

γ ki
, i = 1, . . . ,m. (8)

This choice is still suboptimal (a full optimization requires
the numerical finding of the μi values, in the function of m,
γ , and η, that maximize P 1) but is sufficient to outperform
the SMHPS in many situations of experimental interest. To
further improve the performances, an optimization over the
different μi should be performed. As an example, we show
in Appendix B that in the ideal case case of η = γ = 1 the
one-photon probability can be improved by using optimized
pump parameters. However, the optimization with imperfect
efficiency and transmission cannot be performed analytically.

This multiplexing architecture is therefore asymmetric and
will be denoted with AMHPS, to highlight the differences with
the SMHPS scheme. It is worth noting that both the symmetric
and the asymmetric architecture with the same number m

of crystals, require the same number (m-1) of detectors and
routers. With each binary switch configured as before, if two or
more channels are heralded, the one that needs to pass through
less routers is selected and routed to the end of the chain,
thereby decreasing the probability of absorption. Again, if no
detector fires, the first channel is routed to the end. Moreover,
the different delay lines should be carefully adjusted such that
each source would produce a final output photon at the same
time.

As shown in Appendix A, the probability of emitting n

photons for the AMHPS is given by

PA
n = [(1 − η)μ̄]ne−(1−η)μ̄

n!
e
−ημ̄

(2−γ )γ 1−m−1
1−γ

+ μ̄ne−μ̄

n!

m∑
i=1

e
−ημ̄

γ 1−i−1
1−γ

[
1 − (1 − η)neημ̄e

− ημ̄

γ ki
]
. (9)

It worth noting that, by using the compensation proposed in (8),
the dependence of the one-photon probability on the intensities
is reduced to a single variable, i.e., μ̄. Moreover, when γ → 1,
the value of PA

n for the asymmetric scheme coincides with the
values P S

n [Eq. (6)] of the symmetric scheme for any η. Again,
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in the limiting case of η → 0, we obtain the faint laser source
with mean photon number μ̄.

In the next section we are going to confront the FL, the
SMHPS, and the AMHPS.

IV. PERFORMANCE COMPARISON

This section is devoted to the comparison of the FL,
the SMHPS, and the AMHPS by means of numerical con-
siderations. We will use the performance index previously
defined, namely the maximum of the one-photon probability
P1 provided that the SNR has a greater or equal value than �:

P 1(η,γ,�) = max
μ,SNR��

P1(μ,η,γ ). (10)

Similarly to the ideal case, since limμ→0 SNR = +∞ and
limμ→+∞ SNR = 0 for both the symmetric and the asymmet-
ric scheme, by choosing the appropriate value of μ, any value
of the SNR can be achieved. Notice that, once the number of
crystals and the SNR threshold are fixed, the above quantity
depends only on (η,γ ).

A. Scalability of the schemes for finite efficiencies

We first discuss the scalability features of the architectures
with respect to the total number of crystals. In Figs. 5 and 6 we

plotted the values of P
A

1 and P
S

1 versus the number of crystals
m, ranging from 2 to 256 for different pairs of (η,γ ) and for
threshold SNR given by � = 10.

For what concern the AMHPS it is apparent that, for all the
considered pairs of (η,γ ), the one-photon probability increases
until it reaches an asymptotic value (the dependence of this
value on γ and η is nontrivial). This fact implies that, once the
detection efficiency and the transmissivity are fixed, there is a
threshold value on the number of crystals above which there is
no further improvement in the performances of the scheme. It
is worth noting that for experimental realistic parameters, i.e.,
γ � 0.5, the asymptotic performances are practically already
reached for m = 8.

For what it concerns the SMHPS, after an initial transient,
the one-photon probability starts to decrease (apart from
the ideal case of γ = 1). We have analytically shown that,
excluding the γ = 1 case, in the limit of an infinite number
of crystals (m → +∞) the one-photon probability of the
symmetric scheme approaches the one-photon probability
of the faint laser when the pump parameters are chosen

Asymmetric scheme

1 2 3 4 5 6 7 8
log 2 m

0.2

0.4

0.6

0.8

1.0
P1
A

Faint Laser

0.7, 0.3

0.7, 0.5

0.7, 0.7

0.5, 0.95

0.7, 0.95

0.5, 1

0.7, 1

FIG. 5. (Color online) One-photon probability for the AMHPS
with � = 10 and m ∈ {2, . . . ,256} and various pairs of (η,γ ). We
also report the corresponding P 1 = 0.155 of the faint laser.

Symmetric scheme

1 2 3 4 5 6 7 8
log 2 m

0.2

0.4

0.6

0.8

1.0
P1
S

Faint Laser

0.7, 0.3

0.7, 0.5

0.7, 0.7

0.5, 0.95

0.7, 0.95

0.5, 1

0.7, 1

FIG. 6. (Color online) One-photon probability for the SMHPS
with � = 10 and m ∈ {2, . . . ,256} and various pairs of (η,γ ). We
also report the corresponding P 1 = 0.155 of the faint laser.

in order to have asymptotically the same SNR (as can be
seen in Fig. 6). The result is demonstrated in Appendix C.
This property implies that the performances of symmetric
architecture degrade if we increase too much the number m of
crystals and a “fine tuning” of m should be used in function of η

and γ to optimize P
S

1 . Note that only if the parameters η and γ

are perfectly know the optimization on the number of crystals
can be performed exactly. The asymmetric scheme, on the
other side, is always improving when the number of crystals
is increased: From this point of view it is more “robust” than
the symmetric scheme, since it does not require the precise
knowledge of η and γ .

Let us try to give a motivation for this counterintuitive
behavior: As we have mention above, in the SMHPS each
successfully transmitted photon has to pass through log2 m

routers; increase the number of crystal means also to increase
the absorption rate the photons are subjected to. Thus for this
geometry architecture the benefits deriving from the increase
of the number of crystals do not compensate the increase
in the absorption rate. On the contrary, as we have mention
above, in the AMHPS are most likely to be selected those
channels whose photons have to pass through less routers in
order to reach the global output leading, on average, to a lower
absorption rate.

Summarizing, there are some benefits for the SMHPS in
increasing the number of crystals but only up to a certain num-
ber, depending on the detection efficiency and transmissivity.
Anyway increasing further the number of crystals will lead to
poorer and poorer performances.

The AMHPS offers significant benefits in increase the
number of crystals until a certain number depending on the
detection efficiency and transmissivity; once the threshold is
reached, increasing further the number of crystal will left the
performances unchanged. Finally, we remark that since the
two methods adopt the same post-selection rules, the gap in
the performances arises form the different architecture
geometries that is responsible for the different distribution of
the routers.

Before closing this section, let us briefly review and discuss
the scalability analysis proposed in [15]. In that paper, in order
to evaluate the advantages of a scheme with respect to the
FL, the gain, namely the ratio G between the one-photon
probability of having one photon in the output of the SMHPS
and the probability of producing one photon with the FL, is
considered. It is worth remarking that in [15] the one-photon
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FIG. 7. (Color online) Contours of the one-photon probability for the SMHPS (left) and the AMHPS (right) with guaranteed SNR, � = 10,
and m = 4. For the symmetric architecture, for each (η,γ ) we choose the number of crystals m′ � m that maximize P 1. P 1 is always above
the value of the one-photon probability (given by 0.155) of the FL with guaranteed SNR equal to 10. In the SMHPS, the contour lines are not
always smooth due to the changes in the m′ value.

probability for the proposed scheme is computed neglecting
both detection and transmission inefficiencies: In this ideal
case, it turns out that both the scheme and the FL have the
same SNR provided that the intensity with which the HS units
are fed is equal to the intensity of the FL. In order to analyze the
scalability taking into account the absorption due to the routing
chain, they propose to consider the asymptotic behavior of
the product γ kG, thus comparing the benefits of a growing
multicrystal architecture to the increase in the absorption rate
due to the longer routing chain. As a result of this analysis,
we have that the advantage of the SMHPS is maintained (i.e.,
limk→∞ γ kG > 1) if γ � 1/2.

In order to perform a similar analysis we should compare
the asymptotic behavior, in the limit of an infinite number of
crystals, of the rate between the one-photon probability for the
SMHPS, Eq. (6), with the probability of producing one photon
with the FL, for the same SNR. As shown in Appendix C, in
the k → ∞ limit the SNR of the faint laser with intensity μ is
equal to the SNR of the SMHPS with μ̃ = μ (the number of
crystal is m = 2k). Moreover, as explained previously, in order
to avoid infinite power we need to rescale the pump power (for
both the FL and the SMHPS) with the number of crystals,
μ → μ/2k . The gain we obtain is given by

G̃ = 1 − e
− 1−γ k

(2γ )k
ημ

(1 − η) − e
− ημ

γ k
[
1 − e

ημ

2k (1 − η)
]

1 − e
− ημ

(2γ )k
. (11)

In the infinite k limit, the gain G̃ is greater than 1 for γ � 1
2 (and

is actually divergent for γ > 1/2) as found in [15]. However,
in the rescaled pump power case, the one-photon probability of
the SMHPS tends asymptotically to zero and the gain does not
seem the proper index to evaluate the absolute performance of
a scheme. In fact, despite exhibiting an advantage with respect
to the FL, P1 is asymptotically zero in both cases (on the
other hand, as already said, without the rescaling μ → μ/2k ,
the single-photon probability of the SMHPS and of the FL
coincide in the large k limit, and the gain is always 1).

This means that, with finite transmissivity, not only in-
creasing the number of crystal beyond a certain value does
not bring any advantage, but it is actually detrimental to the
SMHPS scheme performance. On the other hand, the AMHPS
scheme is “robust” with respect to implementations with large
numbers of crystals, as it is clearly shown in Fig. 5.

B. Comparison between AMHPS and SMHPS

We here compare the performances of the AMHPS and
the SMHPS by fixing the guaranteed SNR and the number
of crystals m. However, in order to obtain a fair comparison
we analyze the asymmetric scheme with m crystals with the
symmetric scheme with m′ � m crystals: In fact, as we have
previously shown, the performance of the symmetric scheme
does not always improve when the number of crystals is
increased. Thus, for each (η,γ ), the asymmetric scheme with
m crystals must be compared with the symmetric scheme with
m′ crystals, where m′ � m is chosen in order to maximize P 1.
In Figs. 7 and 8 we displayed the contours plot of P 1 for the
AMHPS and the SMHPS with SNR threshold given by � = 10
and m = 4 and 8, respectively. When � = 10 the one-photon

probability P
FL
1 of the faint laser is given by 0.155. We can see

that both the AMHPS and the SMHPS always outperform the
FL in the plane (η,γ ). As expected, the best performances are
reached for high values of both the detection efficiency and
the transmissivity: Furthermore in this limit the two methods
are comparable since for η → 1 and γ → 1 they both tend to
the ideal situation of the MHPS.

We can also define

�(η,γ,�) := 100
P

A

1 − P
S

1

P
S

1

, (12)

as the percentage differences between the two optimized
single-photon probabilities. In Fig. 9 we shown the contour
of � for an SNR equal to 10 and m = 4 and 32. The AMHPS
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FIG. 8. (Color online) Contours of the one-photon probability for the SMHPS (left) and the AMHPS (right) with guaranteed SNR, � = 10,
and m = 8. For the symmetric architecture, for each (η,γ ) we choose the number of crystals m′ � m that maximize P 1. P 1 is always above
the value of the one-photon probability (given by 0.155) of the FL with guaranteed SNR equal to 10. In the SMHPS, the contour lines are not
always smooth due to the changes in the m′ value.

outperforms the SMHPS in a vast portion of the plane (η,γ ).
Anyway, the advantage of the AMHPS in more realistic
situations is apparent, especially in the area where γ ≈ 0.5
and the detection efficiency is higher than 0.5, the AMHPS
outperforms the SMHPS.

Let us now focus on the timing performance of the two
schemes. The difference between the symmetric and asymmet-
ric scheme, apart from the value of P1, is the delay between
the input pump pulse and the output photon. Let us define
the delay between the emission of a photon from the crystal
or from a router to the subsequent router by �t , and assume
for the sake of simplicity this is the same at every step, and
for both architectures. In the symmetric configuration with 2k

crystals the output photon will come out with a delay k�t with
respect to the pump pulse. In the asymmetric configuration
with m = 2k crystals the output photon will come out with

delay 2k�t . However, these delays are fixed and well known,
hence they do not lead to any inefficiency. Moreover, if we
consider a train of pump pulses, such a difference has no
practical effect other than an initial short delay: At the steady
state both the symmetric and asymmetric architectures produce
single photons with the same repetition rate. We note also that,
with fast switches, delay �t could be of the order of 10 ns:
Even with m = 108 crystals, after 1 s the asymmetric source
would have reached its steady state, corresponding to the same
repetition rate of the symmetric architecture.

V. EXPERIMENTAL FEASIBILITY AND CONCLUSIONS

Let us now discuss a possible experimental realization of
the proposed SPS configuration. Nowadays, integrated devices
represent the best resource to achieve high efficiency of the

FIG. 9. (Color online) Contours of the percentage differences (12) with guaranteed SNR, � = 10, and m = 4 (left) or m = 32 (right).
Again, for the symmetric architecture, for each (η,γ ) we choose the number of crystals m′ � m that maximize P 1. In the white area the SMHPS
is performing better than the AMHPS.
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SPDC process and ensure good coupling into single-mode
fibers (for a review on integrated source see [19]). It is possible
to use nondegenerate collinear phase matching and a dichroic
beam splitter (or alternatively using a counterpropagating
mode source [20]) in order to separate the two beams. For
instance, it was recently reported the possibility of heralding
single telecom photons at 4.4 MHz rate with 45% heralding
efficiency [21]. Moreover, to efficiently detect the triggered
photon, high efficient transition-edge sensors (TES) can be
used: A heralding efficiency of η ∼ 62% has been recently
reported by using TES [22], while the 810-nm single-photon
heralded source with 83% heralding efficiency has been shown
in [14] (see also [23] for a review on single-photon detectors).
Regarding the optical switch, a 2×2 silicon electro-optic
switch with a broad bandwidth (60 nm), an ultrafast speed
(6 ns), and a transmission of γ ∼ 50% has been reported [24];
other modulators otherwise allow lower losses at the cost of a
reduced working spectrum [25]. As shown in Fig. 7, with these
values of η and γ , the asymmetric scheme is more performant
than the symmetric one.

In conclusion we have proposed an asymmetric architecture
for the multiplexed heralded single-photon source and we have
compared it with the symmetric version proposed in [16] and
with the faint laser source by using a performance index P 1 we
introduced. We have proven that the asymmetric architecture
outperform the symmetric scheme in a vast region of the
parameter space (η,γ ) and both outperform the FL for any
values of γ and η. We have also demonstrated that, in the
large number of crystal limit and by considering a fixed SNR,
the symmetric configuration is asymptotically equivalent to
the faint laser for any γ �= 1, while for the asymmetric
scheme the one-photon probability increases until it reaches
an asymptotic value dependent on γ and η. This implies that
the symmetric architecture requires a “fine tuning” of m in

function of η and γ to optimize P
S

1 . On the other side, when
the number of crystals is increased, the asymmetric architec-

ture is always improving its performances. Values of P
A

1 close
to the asymptotic ones, at least for experimentally available
efficiencies, are reached already around eight crystals. This
implies that, even if the expected energetic consumption
for the AMHPS scheme is higher due to the implemented
precompensation for the losses in the routing chain, the
necessary overhead will be very limited. We believe that our
results will be relevant to any future realization of the heralded
single-photon source based on multiplexed architecture.
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APPENDIX A: STATISTICS OF THE HERALDED SOURCES

We here provide a derivation of the MHPS statistics for
the symmetric and asymmetric architecture with the number
of crystals given by m. If we denote by μ̃i the mean number of
generated pairs from the ith crystal and with ki the number of
routers that the signal photon generated by the ith source needs
to pass through, the asymmetric and symmetric architectures
only differ from the expression of ki and μ̃i : in the AMHPS,
ki is given by (7) and μ̃i = μ̄/γ ki , while for the SMHPS we
have ki = k ≡ log2 m and μ̃i = μ̃/γ k , ∀i. We thus calculate
the statistic of the output in this general framework.

The probability that the source i doesn’t trigger is given
by pi = e−ημ̃l . Let us denote by χ the first HS, starting from
i = 1, that triggers. If no source triggers we set χ = 0. The
probability that χ = i is given by

P (χ = i) =
{

(1 − pi)
∏i−1

	=1 p	, if i �= 0,∏m
	=1 p	 if i = 0.

=
{

(1 − e−ημ̃i )e−η
∑i−1

	=1 μ̃	 , if i �= 0,

e−η
∑m

	=1 μ̃	 if i = 0.
(A1)

The probability of having j photons in the ith signal channel
(before the switches), provided that χ = i �= 0 is

P (Ni = j |χ = i) =
μ̃

j

i

j ! e
−μ̃i (1 − (1 − η)j )

(1 − e−ημ̃i )
, if i �= 0, (A2)

where Ni is the number of photons generated at the ith source.
When χ = 0 (no source triggers), the router will select the first
source and the probability of having j photon on channel 1,
provided that no sources have triggered is

P (N1 = j |χ = 0) =
μ̃

j

i

j ! e
−μ̃i (1 − η)j

e−ημ̃i
. (A3)

The probability of having n photons in the final output
provided that χ = i �= 0 and Ni = j is given by

P (N̂ = n|Ni = j,χ = i)

=
{(

j

n

)
(γ ki )n(1 − γ ki )j−n, if i �= 0 and n � j

0 if i �= 0 and n > j,
(A4)

while P (N̂ = n|N1 = j,χ = 0) = (
j

n

)
(γ k1 )n(1 − γ k1 )j−n, if

n � j . In the previous expression N̂ is the number of photons
generated at the global output.

Finally the probability of having n photons in the final
output is given by

Pn =
∞∑

j=n

P (N̂ = n|N1 = j,χ = 0) × P (N1 = j |χ = 0)P (χ = 0)

+
m∑

i=1

∞∑
j=n

P (N̂ = n|Ni = j,χ = i)P (Ni = j |χ = i)P (χ = i)

= [μ̃1γ
k1 (1 − η)]ne−μ̃1γ

k1 (1−η)

n!
e−η

∑m
	=1 μ̃	 +

m∑
i=1

(μ̃iγ
ki )ne−μ̃iγ

ki

n!
[1 − (1 − η)ne−η(1−γ ki )μ̃i ]e−∑i−1

	=1 ημ̃	 . (A5)
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Let us now specialize the last result for the symmetric case
with μ̃i = μ̄/γ k and ki = k. We obtain

P S
n = [μ̄(1 − η)]ne−μ̄(1−η)

n!
e
−ημ̄ 2k

γ k

+ μ̄ne−μ̄

n!

[
1 − (1 − η)ne

−ημ̄( 1
γ k −1)] m∑

i=1

e
−(i−1)η μ̄

γ k ,

(A6)

and performing the last sum we obtain (6).
In the asymmetric case we have μ̃i = μ̃/γ ki and the ki are

given by (7). We obtain

PA
n = [μ̃(1 − η)]ne−μ̃(1−η)

n!
e
−ημ̃( 1

γm−1 +∑m−1
	=1

1
γ 	 )

+ μ̃ne−μ̃

n!

m∑
i=1

[
1 − (1 − η)ne

−ημ̃( 1

γ ki
−1)]

e
−ημ̃	

∑i−1
	=1

1
γ 	 ,

(A7)

and performing the sum on the exponents we obtain (9).
Note that, by using in PA

n or P S
n perfect efficiency η = 1

and perfect transmission γ = 1, we get the probability outputs
of perfect MHPS, Eq. (3).

APPENDIX B: ANALYSIS OF THE TWO-CRYSTAL
ARCHITECTURE: SYMMETRY IS NOT OPTIMAL

In this section we will prove that the (ideal) two-crystal
architecture where the two crystals are driven with the same
pump laser intensity represents a suboptimal choice for the
one-photon probability. We here consider a MHPS composed
by two crystals each one fed with different intensities such that
the mean number of emitted pairs are μ1 and μ2, respectively.
The probability of having n photons in the output is obtained
from Eq. (A5) by using m = 2, γ = 1, and η = 1:

Pn = δne
−μ1−μ2 + (1 − δn)

(
μn

1e
−μ1

n!
+ μn

2e
−μ1−μ2

n!

)
. (B1)

In particular, the probability of having one photon in the final
output is given by

P1 = μ1e
−μ1 + μ2e

−(μ1+μ2), (B2)

and its maximum is achieved when

(μ1,μ2) = (1 − e−1,1). (B3)

This can be seen in Fig. 10 where the contours of P1 are
plotted: the blue line represents the cases μ2 = μ1. Also
by using the performance parameter introduced in Sec. II B
it is straightforward to show that by using μ1 �= μ2 leads
to better performances with respect to the choice μ1 = μ2.
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FIG. 10. (Color online) Contours of the one-photon probability
(B2) for the two crystals MHPS. The blue line represents the μ1 = μ2

case.

Therefore, we conclude that, in general, feeding all the
crystals with the same laser intensities, leads to suboptimal
performances. It is worth noticing that the asymmetry comes
from the switch selection: The first source is initially checked
and, only if this source doesn’t trigger, the switch considers
the second source. As we demonstrated, this asymmetry can
be exploited to improve the probability of having one photon
at the output channel.

In the ideal case (perfect detection and transmission), it
is straightforward to compute the intensities that lead to
the one-photon probability optimal value generalizing the
analysis above. Anyway, such optimization task become quite
nontrivial if finite efficiency are taken into account, especially
for a large number of crystals.

APPENDIX C: INFINITE CRYSTALS LIMIT
OF THE SMHPS

We here analytically show that the one-photon probability
of the symmetric scheme approaches the one-photon proba-
bility of the faint laser when the pump intensities are chosen
in order to have the same SNR. The SNR of the SHMPS is

μ̃
[
1 − e

− ημ̃

γ k eημ̃(1 − η) − e
− 2k

γ k ημ̃(1 − eημ̃(1 − η))
]

eμ̃ − 1 − μ̃ − e
− ημ̃

γ k [(eμ̃ − eημ̃(1 + μ̃ − ημ̃)] + e
− 2k

γ k ημ̃
[(1 + μ̃) − eημ̃(1 + μ̃ − ημ̃)]

. (C1)

In the large k limit, when γ �= 1, the previous expression is equal to the SNR of the faint laser, namely μ̃

eμ̃−1−μ̃
. When μ̃ = μ,

the SNRs are equal in the large k limit and the one-photon probability of the SHMPS becomes

P S
1 = μe−μ 1 − e

− ημ

γ k eημ(1 − η) − e
− 2k

γ k ημ
[1 − eημ(1 − η)]

1 − e
− ημ

γ k

∼ μe−μ for k → ∞ and γ �= 1 , (C2)

asymptotic, in the large number of crystal limit, to the one-photon probability of the faint laser.
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