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We investigate how quantum coincidence interferometry is affected by a controllable manipulation of trans-
verse wave vectors in type-1I parametric down-conversion using adaptive optics techniques. In particular, we
discuss the possibility of spatial walk-off compensation in quantum interferometry and an effect of even-order

spatial aberration cancellation.
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I. INTRODUCTION

Quantum entanglement [1] is a valuable resource in many
areas of quantum optics and quantum information process-
ing. One of the most widespread techniques for generating
entangled optical states is spontaneous parametric down-
conversion (SPDC) [2-5]. SPDC is a second-order nonlinear
optical process in which a pump photon is split into a pair of
new photons with conservation of energy and momentum.
The phase-matching relation establishes conditions to have
efficient energy conversion between the pump and the down-
converted waves, called signal and idler. This condition also
sets a specific relation between the frequency and the emis-
sion angle of down-converted radiation. In other words, the
quantum state emitted in the SPDC process cannot be factor-
ized into separate frequency and wave-vector components.
This leads to several interesting effects where the manipula-
tion of a spatial variable affects the shape of the polarization-
temporal interference pattern. For example, the dependence
of polarization-temporal interference on the selection of col-
lected wave vectors was studied in detail in [6].

Here we engineer the quantum state in the space of trans-
verse momentum and we study how this spatial modulation
is transferred to the polarization-spectral domain by means
of quantum interferometry. We will focus on type-II SPDC
using birefringent phase matching since the correlations be-
tween wave vectors and spectrum are stronger than those
employing other phase-matching conditions.

Our aim is twofold. From one point of view, we study the
effect of spatial modulations on temporal quantum interfer-
ence. This could be useful, for example, in quantum optical
coherence tomography (QOCT) [7,8]. When focusing light
on a sample with nonplanar surface, the photons will acquire
a spatial phase distribution in the far field, which may per-
turb the shape of the interference dip. Our results will pro-
vide a tool to understand this effect.

From a second point of view, we would like to study and
characterize spatial modulation as a tool for quantum state
engineering. This may find application in the field of quan-
tum information processing, where it is important to gain a
high degree of control over the production of quantum en-
tangled states entangled in one or more degrees of freedom
(hyperentanglement).

We start by introducing a theoretical model of a type-II
quantum interferometer, comprising the polarization, spec-
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tral, and spatial degrees of freedom (Sec. II). A modulation in
the wave-vector space is provided by an adaptive optical
setup and equations for the polarization-temporal interfer-
ence pattern in the coincidence rate are derived. In Sec. III,
we introduce a numerical approach for practical evaluation
of the results of the theoretical model, discussing a few ex-
amples for general spatial aberrations.

In Sec. IV we will highlight and discuss theoretically two
interesting special cases. The first one is the possibility of
restoring high visibility in type-II quantum interference with
large collection apertures. In some situations, to collect a
higher photon flux or a broader photon bandwidth, it can be
useful to enlarge the collection apertures of the optical sys-
tem. But when dealing with type-II SPDC in birefringent
crystals, for large collection apertures the effect of spatial
walkoff introduces distinguishability between the photons,
leading to a reduced visibility of temporal and polarization
quantum interference. We will show that high visibility can
be restored with a linear phase shift along the vertical axis.

The second effect is the spatial counterpart of spectral
dispersion cancellation [9,10]. In the limit of large detection
apertures, the correlations between the photons’ momenta
will cancel out the effects of even-order aberrations, exactly
as in the limit of slow detectors the frequency correlations
cancel out the even-order terms of spectral dispersion. The
experimental demonstration of this effect has been reported
recently [11].

As we proceed from the general case of Secs. II and III
into the specific examples of Sec. IV, we will gradually see
that optical aberration is a subject with two very different
faces. On one hand, aberrations in optical components are
normally seen as undesirable, since they lead to distortions in
imaging. We will see that these unwanted spatial modula-
tions may to some extent be canceled. On the other hand, we
will find that such spatial modulations may also be turned
into a useful tool: by deliberately introducing spatial modu-
lations (in effect, purposely adding aberrations in a con-
trolled manner), we can produce useful effects such as the
restoration of visibility mentioned above. The examples we
provide in Sec. IV will illustrate these two aspects and will
show that both can benefit from more detailed study of the
interplay between spatial modulations and spectral correla-
tions.
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FIG. 1. (Color online) Scheme of the proposed setup. Horizon-
tally polarized photons from type-II SPDC are assigned a phase
dependent on the photon transverse momentum ¢,(g,), while the
vertically polarized ones are assigned a phase ¢,(g,). The modu-
lated photons enter a type-II quantum interferometer, which records
the coincidence count rate as a function of the delay 7 between the
photons given by an appropriate delay line.

II. THEORETICAL MODEL

Consider the scheme in Fig. 1. A laser beam pumps a x®
nonlinear material phase matched for type-II parametric
down-conversion, creating a pair of entangled photons. Each
of the generated photons passes through a Fourier-transform
system, and then enters a modulation system which trans-
forms transverse wave vectors for the horizontally (H) polar-
ized photon according to the transfer function G,(q;) and for
the vertically (V) polarized photon according to G,(q,). Af-
ter being modulated in ¢ space, the photons enter a type-II
interferometer. A nonpolarizing beam splitter (BS) creates
polarization entanglement from the polarization-correlated
pair emitted by the source. The beams at the output ports of
the beam splitter are directed toward two single-photon de-
tectors. Two polarizers at 45° before the BS restore indistin-
guishability in the polarization degree of freedom. An adjust-
able delay line 7 is scanned and the coincidence rate R(7)
between the detection events of the two detectors is recorded.
An aperture is placed before the beam splitter to select an
appropriate collection angle.

A. Notation

Consider a monochromatic plane wave of complex ampli-
tude E(r)=Eqe~*T, with r=(x,y,z). For a given wavelength
\, corresponding to a frequency (), the wave vector can be
split into a transverse component q=(g,,q,) and a longitudi-
nal component B(q;{):

k=[q,8(q;:D)]. (1)
The wave number is

n(Q)Q

k(Q) = (2)

The longitudinal component of the wave vector is
B(q,Q) = k*(Q) - |q]*. (3)

Therefore the electric field at the position r and time 7 can be
written as

E(r;1) = f dq f dQE(q,Q)e P BaDz,i0 )

where p=(x,y).
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In paraxial approximation |q|><k*({2), so that

la®
Q)= k(Q) - ——. 5
Bla.Q) = KQ) =5 o 5)
For a quasimonochromatic wave packet centered around the
frequency (), one can write Q=Q,+v, with v<<(),. This
expression can be approximated by

v laf
Q) =kg+ ————, 6

B(q.€) 0 o 2kg (6)

where ko=k(€) and uy=( %(%” Q:QO)‘1 is the group velocity
for the propagation of the wave packet through the material.

B. State generation

Using first-order time-dependent perturbation theory, the
two-photon state at the output of the nonlinear crystal can be
calculated as

l) ~ - i f dtH,(1)|0), (7)

where the interaction Hamiltonian is

H(1) = é J drx?(nES (e, )ED(r,0E (r,0). (8)

The strong, undepleted pump beam can be treated classically.
Assuming a monochromatic plane wave propagating along
the z direction,

E,(r,1) = E ). 9)

The signal and idler photons are described by the following
quantum field operators:

B0 = [ do, [ detmverarosig,e). (10)

where j=e,o.
The biphoton quantum state at the output plane of the
nonlinear crystal is [12]

|y = f dq f dvd(q,v)al(q,Q + v)a (- ¢,Q - v)[0).

(11)

Two photons are emitted from the nonlinear crystal, one
horizontally polarized (ordinary photon) and the other verti-
cally polarized (extraordinary photon), with anticorrelated
frequencies and emission directions.

In the case of a single bulk crystal of thickness L and
constant nonlinearity y,, the probability amplitude for having
the signal photon in the mode (q,{+v) and the idler in the
mode (-q,Qy-v) is

_ LAGq.v) |
d(q,v) = sinc{#} eAanL2] (12)

For type-II collinear degenerate phase matching, the phase-
mismatch function A(q,») can be approximated to be
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P

A(q,v)=—vD+Mé,-q+ (13)
where D is the difference between the inverse of the group
velocities of the ordinary and extraordinary photons inside
the birefringent crystal and the quadratic term in q is due to
diffraction in paraxial approximation. The remaining term is
the first-order approximation for the spatial walkoff.

C. Propagation

Consider a photon described by the operator d;(q.,{2) (po-
larization j=e,o0, frequency (), and transverse momentum q).
Its propagation through an optical system to a point X, on the
output plane is described by the optical transfer function
H;(x;,q;€). In our setup, the field at the detector will be a
superposition of contributions from the ordinary and extraor-
dinary photons. The quantized electric fields at the detector
planes are

EQ (x4,14) = J dq f dwe ™ \[H,(x,,q; 0)d,(q, o)

+ HO(XA’q;w)aAo(q, (1))],

EY (xp.15) = f dq f dwe B[ H (x5,q; 0)d,(q, )

+H,(Xp,q; 0)d,(q, )] (14)

The probability amplitude for detecting a photon pair at the
detector planes, with space-time coordinates (x4,74) and

(xp.1p), is

A(X,Xp:10.15) = (O ES (L) ES (xp, 1)), (15)

For the biphoton probability amplitude we get

A(XA’ Xp; tA’ tB) = j dqudqedwodwe(b(qm q.; W, we)

X [He(XA’ q.; we)Ho(XB’ PR wo)e_i(wetA+walB)
+ HO(XA’ (' PY wo)He (XB’ q.; we)e_i(wotA+wetB)] .
(16)

This probability amplitude represents the superposition of
two possible events leading to a coincidence count in the
detectors:

(1) the V polarized photon with momentum q, and fre-
quency w, going through the lower branch to arrive at posi-
tion x, in detector A, while the H polarized photon with
momentum q, and frequency w, goes through the upper
branch to arrive at position xp in detector B; and

(2) the V polarized photon with momentum q, and fre-
quency w, going through the lower branch to arrive at posi-
tion xp in detector B, while the H polarized photon with
momentum ¢, and frequency w, goes through the upper
branch to arrive at position x, in detector A.

Since the superposition is coherent, there are quantum-
interference effects between the two probability amplitudes.
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1. State engineering section

In the state engineering section, each of the two branches
consists of a pair of achromatic Fourier-transform systems
coupled by a spatial light modulator or a deformable mirror.
Each Fourier-transform system consists of a single lens of
focal length f, separated from the optical elements before
and after it by a distance f. The first Fourier system maps
each incident transverse wave vector q on the plane II;, to a
point x(q) on the Fourier plane I1:

QO
xa)=La, k=", (17)
0 Cc

where f is the focal length of the Fourier-transform system.
Since we assume that the system is achromatic for a certain
bandwidth around a central frequency (), the position x(q)
depends only on q and not on w.

The spatial modulator assigns a different amplitude and
phase to the light incident on each point, as described by the
function G(x)=1(x)e’*™. Each point is then mapped back to
a wave vector on the plane II,,, by the second achromatic
Fourier-transform system.

Using the formalism of Fourier optics [13], the transfer
function between the planes II;, and II,,, can be calculated
to be

hy(x4,X3) = f dxG(x)e Folxxis), (18)

The corresponding momentum-transfer function is

Hi(q;.q3) =G{kioq1]6(q1—q3)- (19)

2. Interferometer

After the plane I, the two photons enter a type-1I quan-
tum interferometer. Each propagates in free space to a bire-
fringent delay line and a detection aperture p(x) to be finally
focused to the detection planes by means of lenses of focal
length f;,. Following the derivation in [6] the transfer func-
tion 1s

Hz(xi’q;w)=fh(xl,xi;w)eiq'X1Xm

2
— ei(w/c)(d1+d2+f0) eXp|:— iw|Xi| (@ _ 1):|
2¢fo \ fo

Xe-i(cdl/zw)|q|2ﬁ<ixi _ q) , (20)
cfo

where P(q) is the Fourier transform of [p(x)[%.
A combination of the two different stages is described by
the transfer function

Ha(x'?qa;wa) = Ga|:kiqa:|H2(X"qa;w)’ (21)
0

where the two functions G;(q) and G,(q) are the
momentum-transfer functions which describe the modulation

062304-3



BONATO et al.

imparted, respectively, on the ordinary and the extraordinary
photons.

D. Detection

Since the single-photon detectors used in quantum optics
experiments are slow with respect to the temporal coherence
of the photons and their area is larger than the spot onto
which the photons are focused by the collection lens, we
integrate over the spatial and temporal coordinates. There-
fore the coincidence count rate expressed in terms of the
biphoton probability amplitude is

R(T) = j dXAf dXBJ thf dtB|A(XA’XB;[A’tB)|2' (22)

Following the derivation described in Appendix A, one
gets

2T
R(T)=R0|:1—A<1—E>WM(T):|, (23)
where A(x) is the triangular function
AGY) 1-|x[, |x|=1 (24)
= 0, x| > 1.

Therefore, the coincidence count rate R(7) is given by the
summation of a background level R, and an interference pat-
tern given by the triangular dip A(1- 1:2)—2) that one gets when
working with narrow apertures, modulated by the function
Wy, (7) which depends on the details of the adaptive optical
system.

The expressions for R, and Wy,(7) are

R(Fjd(If dq' sinc[MLé, - (q-q')]

XGT(kioq)G1<kioq’>G§<— kioq)

X Gz(— kiq, ) oi(MLI2)éx(a-q") ,i(2dy k) la*~la[*]
0

XP,(q-q)Ps(-q+q') (25)

and

1
Wy(7) = 7 dqf dq’ sinc{MLéz- (q+q")A
0

27\ | o S I o\t
(1-32) el o ol
DL ko ko ko
XGz(— kiq’) o i(MID)Téy(a-q") ,i(2d, kMg~ ]
0

XP4[q+q'TPs[- (q+q")]. (26)

In the following we will assume there is spatial modula-
tion only on one of the photons; therefore we set G,(q)=1.
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FIG. 2. (Color online) Example of the numerical approach
adopted to evaluate Egs. (25) and (26). The spatial modulation sur-
face is discretized in sufficiently small squares over which the phase
is averaged.

III. NUMERICAL SOLUTIONS FOR A GENERAL
PHASE SHIFT

Numerically solving for the quantities in Egs. (25) and
(26) in the case of a general aberration may be computation-
ally demanding. Here, we propose an approximation, valid in
the case where the function G(x) changes smoothly over the
mirror surface, as it is the case in experimentally relevant
situations. This model is also interesting from the practical
point of view, since in many cases adaptive optical systems
are implemented using spatial light modulators or segmented
deformable mirrors, where the modulation surface is parti-
tioned into small pixels.

Suppose we partition the Fourier plane Il into small
squares (pixels) of side d (Fig. 2). Let us define the rectan-
gular function

0 if |x|>1
I(x) = . | (27)
1 if x| < 3.

The pixel (I,m) is identified by

U,’m(x,y)=l_[{§+l]ﬂ[§+m}, (28)

selecting the area

(1-Y)a<x<(1+%)d,
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(m—%)d<y< (m+%)d. (29)

We approximate the value of the phase in each square by
the mean value of the actual phase within the square:

1
(’Dl’”:EJ dxdycp(x,y)l_[[2+l}l_[{i—;+m]. (30)

PHYSICAL REVIEW A 79, 062304 (2009)

S et M+ m] Z S iy [2 + l} I B + m} '

I,m I,m

(32)

Substituting this expression into Eq. (23) and collecting the
integrations, one finds

That is,
90 = S pier ML)+ m] (31) R(7) = ]E ? et Pnay 1, (1), (33)
m N,
I,m
In this case (see Appendix B for a justification) where
|
an= f dg, f dQXH{éqx - ’]H Lo.- *]ej a0 o Qa0 (34)

and

Ly (1) = f def do,Il [ éQy —m (I { éQy - M} /21K (0]-0)) = (MID)4,-0,)

><Sinc[ML(qy + Qy)A(l -

Performing the integrations one gets

ap = j de(x)A{f— - (I+ )\)] smc{ 2dd

and

2
E) ] Plg,+Q,1PL- (g, + Q). (35)

i xA{f— —(+ x)] }e“ddl/f’”—”x (36)

Lyu(7) = f dxﬁ(x)A[;:—Z’ - (m+ ,u)}sinc{MLxA{l - %}}

X sinc 2kd< 2d1x _ MT)A|:]C —(m+p) ol (kdif)l(2d, k) )x=(MID) 7)(m—p) (37)
f \k, D kd
A similar expression can be found for the background coincidence rate:
~ 2 2 e—i(d’]m—(f’)\ﬂ R(X)Rg) , (38)
Lm N ’
where
Ry = J de(x)A[f (- )\)]s nc{ ; XA[Z (i- x)] }e“ddl/ﬂ(““x (39)
and
R%L = f de;(x)A[;:—Z —(m- ,u,)}sinc(MLx)sinc{ I xA[fx (m - ,u,)} }ei[(ddl/-f)(mm)_ML/z]x. (40)

The advantage of our numerical a{)?roach is that one can
calculate and tabulate the functions R}y, , ap, and I,,,(7)
for a given configuration, determined by the focal length f,
the shape of the detection apertures, the width of the deform-
able optics, and the distance between the crystal and the

detectors. Then, to calculate the shape of the interference
pattern for a certain phase distribution on the adaptive optics,
one just needs to change the coefficient of a linear combina-
tion of the tabulated functions. This can be a helpful tool for
studying the effect of specific aberrations on the temporal
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FIG. 3. (Color online) Examples of the shape of the polarization
quantum-interference dip with two different spatial phase modula-
tions (in black the unperturbed dip, in red the modulated one). In
the upper figure the effect of a small amount of coma along the
vertical axis is shown. In the lower figure a more complicated su-
perposition of aberrations affects dramatically the shape of the dip.

interference or to engineer the shape of the Hong-Ou-Mandel
(HOM) dip.

Some examples of how the temporal quantum-
interference dip is modulated by a generic spatial phase shift
are reported in Fig. 3, for coma (upper plot) and a superpo-
sition of several different aberrations (lower plot). The inter-
ference visibility clearly degrades in presence of wave-front
aberrations.

IV. PARTICULAR CASES

In this section we will discuss the quantum-interference
pattern, described by Eq. (23), for a few simple cases. First
we will consider the case when no spatial modulation is as-
signed to the photons and Eq. (23) will reduce to the results
already described in the literature for quantum interferometry
with multiparametric entangled states from type-II down-
conversion [6]. Then we will examine the effect of a linear
phase, describing its implications for the compensation of the
spatial walkoff between the two photons. Finally we will
describe what happens in the approximation of sufficiently
large detection apertures, introducing the effect of even-order
aberration cancellation.

A. No phase modulation

Applying no phase modulation, our equations reduce to
the ones derived in [6]. Particularly we find

PHYSICAL REVIEW A 79, 062304 (2009)

Ry= ﬁA(O)ﬁB(O) (41)

and

MLk 27\ |~
WG(T)=SinC|:—ETA<1 _T>:|PA

2d,D DL
Mk | Mk

X _&7'62 PB —_ETéZ . (42)
2d,D 2d,D

The shape of the interference pattern is essentially given by
the product of the triangular function by the Fourier trans-
form of the aperture function, centered at 7=0. For physi-
cally relevant parameters the sinc function is almost flat in
the region where the triangular function is not zero.

To get an analytic result one may assume Gaussian detec-
tion apertures of radius R centered along the system’s opti-
cal axis:

p(x) = eM2He, (43)
In this case the solution is quite simple:
R(D=Ry| 1 A(l ﬁ) -] (44)
7= pL)¢ ’
with
2d,D
T = ! . (45)
k,MR;

Typically, sharp circular apertures are used in experi-

ments. In this case, the function ﬁ[q] is described in terms of
the Bessel function J,(x). For a circular aperture of radius R,

- J, (2R
Plq] = 1(R|q||(l|)

However the Gaussian approximation is still a good one if
the width R; of the Gaussian is taken to roughly fit the
Bessel function (of width R): in our case we take Rg;
=R/(242).

Therefore Eq. (44) is still approximately valid in the case
of sharp circular apertures, just taking

(46)

442d,D

= : (47)
k,MRy

71

Mathematically, in Eq. (44) the interference pattern is
given by the multiplication of a triangular function centered
at 7=DL/2 by a Gaussian function centered at 7=0. The
width of the Gaussian function 7; decreases with increasing
radius of the aperture Rp. Therefore, in the small-aperture
approximation, the width of the Gaussian is so large that it is
approximately constant between 7=0 and 7=DL/2, giving
the typical triangular dip found in quantum-interference ex-
periments. On the other hand, increasing the aperture size,
the width of the Gaussian function decreases, reducing the
dip visibility (see Fig. 4). Physically, this can be explained
by the fact that by increasing the aperture size we let more
wave vectors into the system, and so the spatial walkoff in
type-II interferometry introduces distinguishability, reducing
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FIG. 4. On the right side we can see the interference patterns

with three different detector aperture sizes: the corresponding aper-
ture functions are shown on the left side.

the interference visibility. Enlarging the aperture sizes is of-
ten useful in practice, for example, to get a higher photon
flux. Moreover, since in the SPDC process different fre-
quency bands are emitted at different angles, it may be nec-
essary to open the detection aperture in applications where a
broader bandwidth is needed. This is clearly a problem when
using type-II phase matching in birefringent crystals, since
the visibility of temporal and polarization interference gets
drastically reduced.

B. Linear phase shift

Suppose now we introduce a linear phase function with
the spatial light modulator, along the direction s,

@(x)=5; "X, (48)
we get
M*Lk 27\ | =
Wy (1) = Sinc{—ETA(l - —T>]PA
2d,D DL

Mk, [ Mk,
X {gl%m2+ ZfSI]PB|:— gl%mz— 2f51:| .
1 1

(49)

If we compare Eq. (49) with Eq. (44) we can see that the
structure is the same. We again have a triangular function
centered at 7=DL/2, along with two aperture functions. But
this time, instead of being centered at 7=0, the aperture func-
tions can be shifted at will along the 7 axis. Suppose we now
apply a tilt along the y axis (s,,=0). The modulation function
is then shifted to

fD
Teenter = kOMsly‘ (50)
To get the highest possible visibility, the center of the modu-
lation function must be matched to the center of the triangu-
lar dip,

DL
Tc'enter = 7 > (5 1)

so that

PHYSICAL REVIEW A 79, 062304 (2009)

FIG. 5. Quantum-interference pattern for different detector ap-
erture sizes, introducing a linear modulation of the deformable mir-
ror, in order to restore the indistinguishability between the photons,
decreased by the spatial walkoff in the generation process.

koML
Siy=——. (52)
2f
In the case of a reflective system, in which the phase
modulation is implemented by means of a deformable mirror
(Fig. 5), tilted by an angle 6,

@(x) =2k, tan Oy =s,,y. (53)

Therefore, the amount of tilt necessary to restore high vis-
ibility is

ML
tan 0= —. (54)
4f
In the case of a 1.5 mm crystal, with M=0.0723 (pump at

405 nm, SPDC at 810 nm) and lenses with focal length of 20
cm in the 4f system, we get

0=0.14 mrad. (55)

C. Large-aperture approximation

If the detection apertures are large enough for the 13,» func-
tion to be successfully approximated by a delta function, we
get

WM(T)zquGT(kiOQ>G1(— kioq>e—i(2M/D)réz'q‘ (56)

Suppose that the spatial modulator is a circular aperture
with radius r, with unit transmission and phase modulation
described by the function ¢(x),

0
GI(X) = ei‘p(x)

In this case the function ¢(x) can be expanded on a set of
polynomials which are orthogonal on the unit circle, such as
the Zernicke polynomials:

e(q) = X X @R (p)cos(mb),

if x| >r

57
if [x|<r. 57
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FIG. 6. Plot of the values of |alq)\ 2 for I,\=-100,...,+100.
The radius of the detection apertures is R=5 mm, the distance be-
tween the exit plane of the modulation section and the detection
apertures is d—1=1 m, and the size of the modulation pixels is d
=25 um. Clearly only the diagonal elements are nonzero, i.e., the
ones for which A=—/. In this situation the effect of even-order ab-
erration cancellation is present.

m=—n,—n+2,—n+4,...,n, (58)

where q=(p cos 6, p sin 6). To calculate ¢(—q) we note that
—q=[p cos(6+m),p sin(0+)], so

@(-q) = 2 X R (p)cos[m(6+ m)]. (59)

If m is even then cos[m(6+m)]=cos(m6); otherwise if m is
odd cos[m(0+m)]= —cos m6). Therefore

e(@)-o(-q) =22 X @Rl (p)cos(mb).  (60)

n m odd

So, only the Zernicke polynomials with m odd contribute
to the shape of the interference pattern. This effect is the
spatial counterpart of the dispersion cancellation effect, in
which only the odd-order terms in the Taylor expansion of
the spectral phase survive. The experimental demonstration
of this effect was recently reported in [11].

An interesting question is how large the detection aper-
tures should effectively be, in order to obtain the even-order
aberration cancellation effect. According to the numerical ap-
proach proposed in Sec. IV, the even-order aberration can-

cellation effect manifests itself in the limit where P(x)
=~ 8(x), so that

o — S+ N). (61)

In Fig. 6, a plot of the value for «;, is shown for typical
values of the relevant experimental parameters (detection ap-
erture radius R=5 mm, detection distance d;=1 m, and size
d=0.1 mm of each pixel in the Fourier plane of the adaptive
optical system). Clearly, only the diagonal elements (the ones
for which /=-\) are significant, suggesting that the effect of
even-order aberration cancellation may be observable for
most typical experimental parameters.

To get an idea of what happens for different experimental
conditions, we can compute the ratio between the intensities
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FIG. 7. (Color online) Plot of the ratio p, between the intensities
of the nondiagonal coefficient «(; and the diagonal coefficient ¢y,
as a function of the radius of Gaussian detection apertures, R, for
different values of the distance between the exit plane of the modu-
lation section and the detection apertures (d;=1,10,100 c¢cm). On
the upper plot the size of the modulation pixel d is d=0.5 mm,
while in the second case it is d=0.25 mm. Clearly, for experimen-
tally interesting cases, the off-diagonal coefficient is at least 3 or-
ders of magnitude smaller than the diagonal one, leading to even-
order aberration cancellation.

of the nondiagonal coefficient «y; and the diagonal coeffi-
cient ay:
2
||

- |0100|2'

Po (62)

The lower the value for p; is, the less significant the coeffi-
cients for A # —[ are: the even-order aberration cancellation
effect will therefore manifest itself more clearly.

Values for p, are shown in Fig. 7 for two different cases.
In both pictures, the value of p, is shown as a function of the
Gaussian detection aperture radius R, for three different val-
ues of the distance between the plane Il; and the detection
lenses d,. In the upper panel, the size of each small square in
which the spatial phase is assumed to be constant is d
=0.5 mm, while in the second case it is d=0.25 mm. In
both cases p, is significantly smaller than 1, and it becomes
smaller and smaller, increasing the value of the detection
aperture radius. However, p, is smaller for larger values of d,
implying that the spatial variability of the modulation phase
plays a role in the degree of even-order cancellation of the
modulation itself.

It turns out that for the aberration cancellation effect to
appear, it is in fact only necessary for one aperture to be
large and for one detector to be integrated over. This is suf-
ficient to produce the transverse-momentum delta functions
that lead to even-order cancellation. To demonstrate this, we
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can, for example, consider the case where the aperture at B is
large, and the detector at B is integrated over, while the ap-
erture at A is taken to be finite, with detector A treated as
pointlike. The location of the pointlike detector will hence-

PHYSICAL REVIEW A 79, 062304 (2009)

forth simply be denoted as x, and we continue to work within
the quasimonochromatic approximation. If we integrate only
over xp, leaving x unintegrated, then it is straightforward to
show that the analogs of Egs. (A3) and (A4) are

) ] = ~ Qpx )\ ~ ~ Qx )\ ~ Qox )\ ~
W(O)(X,q,q’,v) — e—(md/ﬂo)(qZ_q 2){Q(q+ _>Qr(_q/ _ ﬁj)PB(q’ _q) + Q<_q+ _0x>Qr(qr _ —OX>PB(q—q')},

Qpx

cfo cfo

(63)

A s oo~ _ Qx - _ Qox\ ~ Qox) -
W(x,q,q’,v) = e~ cd )= ){Q<q+—)Q’(— q’+—M)PB(—q’—q)+Q<—q+—OX>Q’<+q’+—°x)PB(q—q’)}-
Cf() ch

cfo

We have defined é and Q’ to be the Fourier transforms,

respectively, of p, and p}. ﬁB is, as before, the Fourier trans-
form of |pgl>. We now let aperture B become large, so that

the function P, goes over to a delta function. For G,(x)
=¢'*™ and G,(x)=1, we can substitute these results into the
coincidence rate (which will now be a function of both 7and
the position x of detector A), and carry out the ¢’ and v
integrals. For the modulation term, we find

Ry (x,7) = R(x,7) = Ro(x) (65)

=J dgel#-d-0)(2iMTD)ey,(2ig*k,[(27D)+L]

. 2q2L>|:~< Q#.x) ~*< Q_Ox)
><Slnc< K Olg+ oy Q'\l-qg- oy

3(-a+ 22 _Q_MH
+Q<—q+ cf())Q =) (66)

Here, we have used the fact that the Fourier transform of
pa(x) equals the complex conjugate of the Fourier transform

of p,(=x), in order to write Q' in terms of Q. We see from
the presence of the factor el#(@-#(-4)] that even-order aber-
ration cancellation occurs even though one aperture is finite
and the corresponding detector is pointlike. This point may
be of importance in future attempts to produce aberration-
canceled imaging.

V. CONCLUSIONS

Summarizing, in this paper we have carried out a theoret-
ical study of the relation between the wave-front modulation
of the entangled SPDC photons and the shape of the result-
ing temporal quantum-interference pattern. Due to the mul-
tiparametric nature of the generated entangled states, the
modulation on the spatial degree of freedom can affect the
shape of the polarization-temporal interference pattern in the
coincidence rate. Our aim is twofold: from one side we want

cfo
(64)

to study the effect of wave-front aberration on quantum in-
terferometry, and from the other we want to discuss a way to
engineer multiparametrically entangled states.

We have introduced a theoretical model for calculation of
the shape of the polarization-temporal interference pattern
given a certain general phase modulation in the crystal far
field, assuming as a free parameter the shape and the dimen-
sion of the collection apertures. Using a numerical method to
study the resulting equation has shown that for typical ex-
perimental cases the hypothesis of large apertures can be
assumed to be valid. In such an approximation, only the odd
part of the assigned phase modulation affects the shape of the
interference pattern. This effect has recently been demon-
strated experimentally [11].

Moreover, it is often useful in experiments to enlarge the
collection aperture in order to collect a higher photon flux
and larger optical bandwidth. But when working with type-II
birefringently ~phase-matched down-conversion, spatial
walkoff between the emitted photons introduces distinguish-
ability between the two possible events that can lead to co-
incidence detection, reducing the visibility of quantum inter-
ference. Such walkoff can be compensated for with a linear
phase shift in the vertical direction, restoring high visibility.
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APPENDIX A: SKETCH OF DERIVATION OF EQ. (23)

In this appendix we sketch the major steps for the derivation of Eq. (23). Substituting Eq. (21) into Eq. (16) and the result
into Eq. (22), one finds the following expressions for R, and Wg(7):

. A f oo\ S [, )
Ry= f dqdq'dvd*(q, v)@(q’,v)Q(;q)Gl(;q )Gz(— EQ)Gz(— 4 )W‘”(q,q v), (A1)
1% _ L ' * ' * -f J_c ’ * ‘Z ‘Z 4 !
M(T) - dqdq dV(I) (qv V)(I)(q s V)Gl q Gl q G2 -7q G2 -7q W(q7q ’V)9 (Az)
Ry k k k k
where
W(O)(q’q” V) = f dXAdXBH*(XA’q7 V)H*(XB’_ qa_ V)H(XA9q,7 V)H(XB’_ q/7_ V)
+ H' (x4, q,— V)H (x,q, V)H (X5, — q',~ V)H(Xp,q", V) (A3)
and
W(q’q,, V) = f dXAdXBH*(XA’(L V)H*(XB’_ q.— V)H(XA7_ q/a V)H(XB’q/’_ V)
+ H*(XAa_ q,— V)H*(XB,q’ V)H(XAaq”_ V)H(XB’_ q” V) . (A4)
The angular and spectral emission function ®(q, ») is given by
D(q,v) = f dt| £ o L | (AS)
' L 2 )
Performing the integrals over the spatial coordinates dx, and Xy, one gets
: 2 127, =~ ~ ~ ~
WO (q,q',v) = CH*ITP (g - q') P4~ (a—a')]+ Pal- (a-a")]Psl(a—a)]} (A6)
and
: 2 127, = ~ ~ ~
W(g.q',v) = @I =TYP, [(q + )P~ (@ + )]+ Pal- (a +a")]Psl(q +q")]}- (A7)

Finally, use of the integral representation for the sinc func-
tion [Eq. (A5)] allows the v integration to be carried out, but
at the expense of introducing two integrations over a pair of
new parameters (say, z and z’). Note the following relation,
which can easily be verified by sketching the functions on
the left-hand side:

1 if —1=a=0, -
Hx][x-a]=91

0 otherwise.

if0=a=1, -

From this, it follows that

f M[x]M[x - aldx = Aa), (A9)

where A(a) is the triangle function. These facts allow us to
carry out the two z integrations that arise from the sinc func-
tion, leading to the result shown in Eq. (23).

APPENDIX B: JUSTIFICATION OF EQ. (32)

Suppose we have a set A, which can be partitioned into a
collection of disjoint subsets Ay, with k=1,2,...:

UAk=A, AkﬂAl=¢ lf k?&l (Bl)
k
To each set we can associate a characteristic function,
) 1, xe A (B2)
Xk Y= O’ X ¢ Ak,
such that
260 =xa(),  x@x) =),  (B3)
k
where x, is the characteristic function for the full set,
w={l <l (B4)
Xar) = 0, x&A.

The term ¢/?X() assumes the value of ¢'% for y,(x)=1 and
the value of 1 for y;(x)=0 [1—-x(x)=1], so
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exp[iE ¢kxk<x>] = [T e = [T {101~ )] + b= TT L1+ (e~ 1] (B5)
k k k k
If we express the first few terms we get

T+ (%= Dxd =[1+ (1= Dx 1+ (2= Dxa] -+

k

=1+ =Dy + (2= Dxy+ -+ (1= ("= Dy x; + (€ = 1) - Dxixz
+ ok (@M= 1) (@ = D = Dxxaoxs + (€91 = D2 = 1)(e'® = Dxixoxa + . (B6)

So that in the end
eXp[iE ¢ka(x):| =1+ 2 [(e - Dyl =1+ ey — 2 xie= > %y (B7)
k k k k k

Since the square sets we have used in Sec. IV satisfy Eq. (B1), then the result expressed in Eq. (B5) is valid for our case.
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