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We use a tunable quantum interference in type-II parametric down-conversion to construct two-photon
quantum states that exhibit less-than-maximal, and tunable, violations of Bell-type inequalities. These states,
no longer singlet-state analogs, possess an interference term of controllable magnitude that we adjust by tuning
the measurement bandwidth. We show violations of two Bell-type inequalities in polarization variables, one
more general than the other. We use these tunable viclations to probe the threshold degree of interference that
must be present to generate a violation, using an appropriate quantitative figure of merit.

PACS number(s): 03.65.Bz, 42.50.Dv

L. INTRODUCTION

In previous work (atomic cascade [1-3], type-I [4,5], and
type-1I [6] experiments) with optical photon violations of
Bell-type inequalities in polarization variables, the quantum
state of interest has been a photon polarization analog of the
spin-L singlet state. Such analogs provide the maximum
theoretical quantum violation for two particles of a Bell-type
inequality. The experimental tests [1-6] have confirmed this,
up to modest experimental nonidealities and detection effi-
ciency losses. - ’

In this work we generate states that are no longer singlet-
state analogs. They lack the rotational symmetry of singlet-
state analogs, and exhibit weaker quantum interference. We
show with data that we can tune both the interference and the
degree to which two different Bell-type inequalities in polar-
ization variables are violated.

We use the quantum state of orthogonally polarized
type-II pairs generated in parametric down-conversion to ex-
hibit these Bell-inequality violations. The state exhibits a
bandwidth-dependent interference that lessens as the mea-
surement bandwidth grows. As shown in Ref. [7], the
strength of the interference term of interest can be tuned over
a wide range.

Specifically, we show Bell-inequality violations of greater
than three standard deviations for quantum states character-
ized by values of p=0.84, 1.53, and 1.73. Here p is a di-
mensionless parameter (equal to 2 for a singlet-state analog)
useful [7] in quantifying the magnitude of the tunable inter-
ference. For values of p less than 2, the quantum state lacks
the rotational symmetry of a single-state analog, and gener-
ates weaker violations of Bell-type inequalities. We report
such violations, using the tunable feature to probe the thresh-
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old value of p below which Bell-type inequalities cease to be
violated. We shall show that such a threshold depends, in
part, on the particular Bell-type inequality under consider-
ation. '

The nonsinglet states measured here differ from other
[8—11] constructions of less-than-maximally violating states.
In those constructs, the coefficients of the terms in the mul-
titerm states are adjusted to give unequal weighting on each
term. Here, each term of the two-term state is weighted
equally, and the wash-out of the relative phase between them
is controlled by p. We emphasize that the present work is an
experimental relaxation of generating nonmaximal entangle-
ment [12], in a tunable fashion, and in a manner different
from the theoretical approaches proposed already [8—11].

II. STATES OF REDUCED INTERFERENCE

Our experimental setup is described in Ref. [7], where a
coincidence detection measurement using linear polarization
analyzers is made on the two-photon quantum state produced
in type-II down conversion and incident on a nonpolarizing
beam splitter. The coincidence behaviors are well summa-
rized by a probability

P ,sin?@;cos?6,+ cos? @, sin? @,

—p sin#;sinf,cosf;cosb,, (1)

with analyzers in front of the two detectors (D1 and D2) set
at angles 8; and 6,, respectively. Here p is a coefficient that
we have found to depend on two variables: the bandpass of
the filters used in front of the detectors, and the BBO crystal
length.
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FIG. 1. Violations of the Freedman form for
p<2. The left-hand side of Eq. (2) as a function
of & plotted for p=1.98, 1.73, 1.53, and 0.84.
The curves are generated using the theoretical
prediction of Eq. (3) multiplied by the experi-

- mentally measured values of 7,,7,. Measured
violations for the first two values are shown.

Freedman-Clauser Function

With the longer crystal, and for bandpasses greater than 1
nm with the shorter crystal, we measured p to be less than
the ideal value of 2 [7]. For any value of p, Eq. (1) cannot be
factored into a function of ¢, only, multiplied by a function
of 6, only. This nonfactorizability is due to the entangled
{12] nature of the quantum state. It is difficult to generate the
8 dependence of the p-dependent term by a classical mecha-
nism, but quantum mechanically it arises from a cross term
generated when two probability amplitudes, one representa-
tive of “ordinary (o) ray sent to D1, extraordinary (e) ray
sent to D2 and one representative of ““e ray sent to D1, o
ray sent to D2,” are added coherently. The two-photon quan-
tum state at our beam splitter has these two amplitudes,
which must have a definite phase relation between them to
produce the p-dependent interference term.

One can ask of what value are the states of reduced inter-
ference with p less than the ideal value of 2. The application
here is in answer to this question. The interference, though
not ideal, is nevertheless of sufficient magnitude to enable
the coincidence counts to violate Bell-type inequalities. All
such violations disprove Bell’s two postulates [13,14] of lo-
cality and reality to hold in describing the behavior of quan-
tum particles. These two postulates are true for nature as
described by classical physics, and have intuitive appeal.
Therefore, violations by quantum particles cast in quantita-
tive terms the types of behavior allowed in quantum mechan-
ics but not in any local reality theory.

III. TUNABLE BELL-INEQUALITY VIOLATIONS

The quantum states generating the p<<2 behavior are pre- -

dicted to violate Bell-type inequalities to a lesser degree than
the singlet-state analog achieved with p=2. We achieve this
comparison in two ways. The first is to show violations of
the Freedman-Clauser form of the Bell inequality. Because
of limitations of this method, we then present a more general
Bell inequality, motivate an appropriate figure of merit to use
in quantifying the strength of an experimental violation, and
show violations with our measurements.

We first consider the Bell inequality form of Freedman

and Clauser [14,15],

Nix($)—Nin(39)|

=0.25, 2

Ni(—,—) | @
for ¢=0,—0,=22.5°, N5(¢) representing coincidence
counts collected in some length of time, and N,(—,—) rep-

resenting coincidence counts in the same length of time with
both analyzers removed. This form is applicable here for all
values of p, because all but one of the requited symmetry
properties of the system used in its derivation hold irrespec-
tive of the value of p. These symmetry properties are that
coincidence counts be independent of the analyzer angle
when the other analyzer is removed, and that singles in each
detector be independent of the analyzer angle in front of the
detector.

The one requisite symmetry property that is broken for
p<<2 is a “rotational invariance” that P ,(6,,6,) depend on
¢ only. The coincidence counts of Eq. (1) are no longer a
function of only one variable, as in the situation with p=2.
To show this, we rewrite Eq. (1) in the form

' 2
p)sinz(el— .92)+( .

! 2+ P ’
PIZOC( ) Sinz( 01 + 02), (3)
showing coincidences for p<<2 to depend not only on the
variable ¢=0,—6,, but also on the variable 3,=6,+6,.
The specification of ¢ leaves one more degree of freedom,
that of the sum angle (Z,), unknown. This breaks rotational
invariance, forcing us to examine the consequences for deri-
vations of Bell-type inequalities. An examination of the deri-
vation of Freedman and Clauser shows it to be upheld if we
impose a constraining condition that this second variable

TABLE 1. Bell-inequality angles for p<<2.

6, o, 6, 0,

P (deg) (deg) (deg)
1.98+0.04 . 22.5 . 675 .. . 135 90
1.73+0.04 22.5 67.5 135 90
1.530.04 11.25 60 120 82.5
0.84+0.03 0 45 105 75

(deg) o
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TABLE II. Bell-inequality measurements: coincidence counts for p<<2.

p  N81.6)  N(6,8)  N(8LE)  N(6.8)  N(6L—)  N(—,.6y)
1.98*0.04 951 4060 3701 4054 4534 5060
1.73%£0.04 2021 8302 8040 9044 10213 10790
1.53+0.04 5138 17 150 20 846 22 040 24 860 26 626
0.84%+0.03 8936 . 13 477 20 829 20981 22373 24 479

(2) equal 3¢; i.e., assume the value 67.5° (mod ) when
¢$=22.5°, and 22.5° (mod ar) when ¢=67.5°.

We took measurements under these conditions for the (3.1
nm, 3.1 nm) filter combination generating p=1.73+0.03.
The result for the left-hand side of Eq. (2) is
0.2798*=0.0045, less than the p=1.98*0.04 result [6] of
0.316+0.003. These two measurements are plotted in Fig. 1.
The p=1.73 quantum state, though not a singlet-state ana-
log, is nevertheless able in coincidence counts to violate the
Freedman-Clauser form of the Bell inequality.

By comparison, the quantum prediction for (2), for a
singlet-state analog and 100% efficient analyzers, is
0.252~0.354. Our p=2 value of 0.316:+0.003(10) is less
than the perfect quantum prediction because of passive,
polarization-independent losses at the analyzer faces, which
were not optimally coated for the 702-nm wavelength. These
losses were measured as efficiencies #;,#, of analyzers 1
and 2 (0.905x0.014 and 0.976+0.015, respectively), and
imply a quantum-mechanical violation of (2} by a p=2 state
of 0.312x0.018.

Under the condition that the sum angle be always equal to
3¢, the magnitude of the left-hand side of Eq. (2) is pre-
dicted to be less than its value for p=2 by the factor p/2.
These predictions are graphed in Fig. 1 for the four values of
p (1.98, 1.73, 1.53, and 0.84) that we measured. This figure
shows that the states with p<<2 are still possible to generate
from Eq. (2) violations of the bound (0.25) imposed by
Bell’s two postulates.

The problem we have addressed so far is the specification
of the sum angle. Because Eq. (2) only represents a valid
Bell-inequality expression for certain choices of the sum
angle, these choices are a constraining feature. This con-

straint leads to the aforementioned suppression factor of
p/2 which, as Fig. 1 shows, prevents values of p less than a
threshold value (~1.58 using the measured values for
71,7,) from generating violations. With ideal analyzers
(71,7, both equal to 1), the threshold value of p is V2.

The quantum states for values of p below this threshold
can nonetheless exhibit violations of other, more general
Bell-type inequalities, specifically variations of the Clauser-
Horne-Shimony [14] form. The first is

[=N12(61,63)+Ny1x(6],602) + N12(6,,6;) + N1x(6y,6,)]
=[N12(81,—) +Nia(—,6,)1<0, 4)

in which the Clauser-Horne no-enhancement assumption
[16] has already been imposed, and in which probabilities
have been converted to coincidence counts N, accumulated

-in some time interval, as before.

Although we have generated violations of (4), we advo-
cate a stronger version in which the transmission losses of
the analyzers are recognized and removed. The basis for this
is a generalized version of the no-enhancement hypothesis,
in which the passive, polarization-independent analyzer
losses are assumed not to affect the behavior of the source
whose coincidence properties are under study. We note that
these analyzer losses must be controlled [16,14,17] in a rig-
orous bell-inequality test. For our purpose here of exhibiting
the coincidence behavior of the source, we use this generali-
zation to alter (4) to the form

[—N1(81,0;)+Ni(0],6,) +Npy(6;,605)+Nix(6;,6,)]

[N 12(01,—)+ 5 Np(—,6,)1<0. 3

TABLE II. Bell-inequality violations for p<<2 using counts of Table I.

p Eq. (4) Eq- (5) 7:N(8y,—) mN(—,8,) o-1 Q prea—1

1.98 1188 1778 4425 4579 0.198 0.207

+0.04 +143 +178 +97 +08 +0.022 +0.010
(8o) (100)

1.73 2362 3632 . . 9968 9765 0.184 0.159

+0.04 +211 +310 + 188 + 187 +0.015 +0.008
(lio) (110)

1.53 ’ 3412 6538 24 263 24 097f 0.135 0.128

+0.04 *+326 +640 *+418 *+413 *+0.015 +0.006
(100) (100)

0.84 -501 2169 21836 22154 0.049 0.039

+0.03 +333 . _+506 +379 +382 +0.014 +0.005

no violation (3.60)
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To violate these inequalities, we searched numerically for the
four analyzer angle setiings (6,,0],6,,865) that would gen-
erate the maximal violation of these two equations. The
angle choices we used, shown in Table I, are not a unique
choice to achieve the same violation. The measurements at
these angles are shown in Table II, and the calculated viola-
tions are shown in Table III.

We note that the Bell-inequality violation is a straightfor-
ward application of determining whether the coincidence
count expression on the left-hand side of Eq. (4) or Eq. (5) is
greater than 0. No symmetry properties about the system
need be demonstrated. Therefore, the six coincidence mea-
surements of these equations are the only measurements
needed.

To assess the degree to which a violation has been shown,
we advocate as an appropriate figure of merit the quantity
Q—1, for Q the ratio of the quantity in Eq. (5) in square
brackets to the quantity in parentheses. A violation generates
a positive (Q — 1). The measured values of Q — 1 are listed
in Table III.

This figure of merit Q—1 is also useful to apply to Eq.
(2). As derived by Freedman and co-workers [14,15], two
Bell-inequality expressions, each with Q—1 =(\/5 —1)/
2~0.207, are combined to yield the form (2), in which the
quantum prediction exceeds the Bell bound by twice this
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factor, or \/5 —1~0.414. That is, two ~20% violations were
combined to yield the ~40% violation of Eq. (2).

The maximum value of Q—1 for Eq. (5) is attained for
p=2, when Q—1=( \/5— 1)/2~0.207. Violations (i.e.,
positive O —1) are observed for p as low as 0.84 (see Table
III), and are theoretically possible down to p=~0.78. The
choices of angles generating the optimum Q—1 are for suf-
ficiently small p no longer the same as for larger values of
p. This confirms the understanding that the violations of Eq.
(2) mentioned above, in which constraints are placed on the
sum angle, do not, in general, represent the largest possible
violations for a particular p.

From Table III, our measured violation of Eq. (5), a varia-
tion of the Clauser-Horne-Shimony version of the Bell in-
equality, is as large as 11o. Our purpose here is not to mea-
sure a Bell-inequality violation to great precision, but rather
to document the quantum nature of the two-photon state that
is in view of the detectors.

To summarize the results of Table III, we observe viola-
tions of Bell-type inequalities with nonsinglet states, states
with reduced interference (i.e., p<<2) as compared with the
singlet-state analog (for which p=2). These violations can
be quantified with the figure of merit Q— 1 as being weaker
violations than those of singlet states.
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