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Two-photon entanglement in type-II parametric down-conversion
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We present an experimental study of the entangled two-photon polarization states in type-II optical
parameiric down-conversion. It is interesting to see¢ that the polarization entanglement depends on the
detection spectral bandwidth, i.e., the bandwidth of the spectral filters placed in front of the detectors.
The entanglement is also dependent on the length of the down-conversion crystal. A simple quantum

model is provided to explain these phenomena.

PACS number(s): 03.65.Bz, 42.50.Wm

I. INTRODUCTION

Quantum-mechanical entanglement [1,2] has attracted
a great deal of interest since the early days of quantum
mechanics. An example of a two-particle entangled state
was discussed in 1935 by Einstein, Podolsky, and Fosen
such that the measurement of an observable of one parti-
cle determines the value of that observable for the other

particle with unit probability [3,4]. Two-particle entan- -

gled states have been demonstrated in Einstein-
Podolsky-Rosen (EPR)-type experiments and Bell’s in-
equality measurements [S]. The two-photon entangled
spin state in positronium annihilation was predicted by
Wheeler and experimentally proved by Wu and Shaknov
[6]. Atomic cascade decays were intensively used to pro-
duce similar two-photon entangled spin states to test
Bell’s inequalities [7,8]. Optical parametric down-
conversion was introduced for the study of two-particle
entanglement in the late 1980s and has recently attracted
a great deal of attention [9].

In optical parametric down-conversion (OPDC), a

pump beam is incident on a birefringent crystal. The
pump beam is intense enough so that nonlinear effects
lead to the spontaneous emission of a pair of light quanta
highly correlated in phase space, :

0,0, =,

k,+k,=k, , (1)
where o; is the frequency and k; the wave-number vec-
tor, linking pump (p), signal (1), and idler (2). The
down-conversion is called type I or type II depending on -
whether the photons in the pair have parallel or orthogo-
nal polarization. The pair of light quanta emerging from
the nonlinear crystal may propagate in different direc-
tions or may propagate collinearly. The frequency and
propagation directions are determined by the orientation
of the nonlinear crystal, which reflects the phase-
matching relations in Eq. (1). The type-I OPDC two-
photon entanglement in spin or in space time has been
demonstrated by different experiments in the past several
years [10-17]. Two-particle spin entanglement for type-
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II OPDC was recently demonstrated in our laboratory
under two experimental conditions: (1) detecting coin-
cidences in narrow spectral bandwidth and (2) using a
thin nonlinear crystal [18]. In contrast to type-I OPDC,
the spin entanglement of the type-II OPDC light quanta
pair depends on the detection bandwidth and the length
of the nonlinear crystal. In this paper, we wish to report
the experimental study of this detection bandwidth and
crystal length dependent spin entanglement of type-II
down-conversion. A simple quantum model is presented
to explain this phenomenon. '

Because the type-II OPDC photon pair is orthogonally
polarized, we can easily produce a two-particle entangled
state in linear, circular, and elliptical polarizations with
the help of a quarter-wave plate and a beam splitter. The
EPR-Bohm-type correlation and the corresponding Bell’s
inequality violation can be demonstrated in a simple
beam-splitting experiment [18].

II. DETECTION BANDWIDTH DEPENDENCE
OF THE ENTANGLED SPIN STATE

The experimental setup to study the effect of detection
bandwidth and crystal length on the two-photon spin en-
tanglement is illustrated in Fig. 1. A single-mode cw
argon-ion laser line of 351.1 nm was used to pump a BBO
(B-BaB,0,) nonlinear crystal. The BBO was cut for a
type-II phase-matching angle to generate a pair of or-
thogonally polarized signal and idler photons degenerate
in a 702.2-nm wavelength in a single beam. Two BBO
crystals with lengths of 5.65 and 0.5 mm, respectively,

-were used in the experiments. The down-converted beam

was separated from the pumping beam by a UV grade
fused silica dispersion prism, then injected at a near nor-
mal incidence angle to a polarization independent beam
splitter which has 50%-50% reflection and transmission
coefficients. A detector package, which is composed of a
Glan-Thompson linear polarization analyzer, a narrow
bandwidth interference spectral filter, and a single photon
detector, is placed in each transmission and reflection
output port of the beam splitter. The photon detectors

23 ©1994 The American Physical Society



24 SHIH, SERGIENKO, RUBIN, KIESS, AND ALLEY 50

o N
(7 '—j 351.1 nm
BBC
Type il
——
Ar laser
702.2 nm F2
-—®
) - “Analyzer 2
nME Y |
BS &
] Analyzer 1 v
E o~ !
= D Coincidence
T 1 Counter
N}

FIG. 1. Schematic diagram of the experiment. BS denotes a
beam splitter, BBO is a 2 barium borate crystal, F is a filter and
D is a photon detector.

are dry ice cooled avalanche photodiodes operated in the
Geiger mode. The output pulses of the detectors are then
sent to a coincidence circuit with a 3 nsec coincidence
time window. The two detectors are separated by about
2 m, so that compared to the 3-nsec coincidence window,
the detections are spacelike separated events.

" The coincidence counting rates were studied as func-
tions of angles €, and 8,, where 0, is the angle between
the axis of the ith polarization analyzer and the X direc-
tion, which is defined by the o-ray polarization plane of
the BBO crystal. Keep in mind that a right-handed natu-
ral coordinate system with respect to the k; vector as the
positive Z direction is employed for the discussions in this
paper. The following form of coincidence rate as a func-
tion of 8, and 8, was observed in the experiments:

R.=R (cos?8;sin’0,+5sin?0 cos’8
— psiné,cosf,sind,cosh,) , ' 2)

where p is a parameter that depends on the detection
bandwidth, i.e., the bandwidth of the interference filters
placed in front of the detector and the length of the BBO
crystal. If p=2, Eq (2) reduces to

R.=R_sin*(0,—0,), : (3)

whlch is the expected quantum correlatlon for the entan-
gled two-photon polarization state,

W)y =(1/vV2)X|X)e|Y,) =Y )elX,)). @

|¥) quantum mechanically indicates a two-photon polar-
ization state that is a superposition of the quantum states:
(1) (o-ray transmitted ) ® (e-ray reflected) and (2) (e-ray
transmitted) ® (o-ray refiected) when the orthogonally
polarized photon pair meets the beam splitter. On the
other hand, if p=0 the interference cross term in Eq. (2)

does not contribute, and we cannot detect the spin entan-
glement from the measurement.

Figure 2 reports the measured values of p for BBO
crystals with lengths of 5.65- and 0.5 mm for different
bandwidths of the filters. Note that for the 5.65-mm
BBO crystal, p was always substantially less than 2 for
the filters that were used in the measurements. For the
0.5-mm BBO, p=1.98+0.04 was achieved with a 1-nm
bandwidth spectrum filter. The solid curves are the fits to
a theoretical model which will be presented below. The
values of p were obtained from the measurements of the

- coincidence rate as a function of 6, and 8,. Figures 3 and

4 are typical measurements that reflect the different coin-
cidence behavior for 5.65- and 0.5-mm BBO crystals. In
Fig. 3, 6, was set to 45° and the coincidence rate was
mapped out as a function of 8,. In Fig. 4, both 6, and 6,
were changed, keeping the sum of 6, and 8, equal to 90°.
In both Figs. 3 and 4 the filters had 1-nm bandwidths. By
fitting many similar curves, p=0.72+0.07 and
p=1.9810.04 were determined for 5.65- and 0.5-mm
crystals, respectively, from these measurements.

For collinear type-I1 OPDC the two-photon part of the
state that emerges from the down-conversion crystal may
be calculated from the standard theory (first-order per-
turbation theory) to be [19,20]

W)= [dod(o,+w,~0, Wik, +k,—k,)
Xal(ok Naflwykl0) , 5)

where w and k represent the frequency and.the wave
number for signal (1), idler (2), and pump (p). The fre-
quency phase-matching condition is explicitly displayed
by the 8 function; the wave-number phase-matching con-
dition 8(k,+k,—k,) is replaced by a sinc function
Pk, +ky,—k,)=y(Ak), because of the finite length of
the crystal [20]. The function ¥(Ak) determines the nat-
ural spectral width of the two-photon state. The sub-
script indices 0 and e for the creation operators indicate
the ordinary and extraordinary rays of the down-
conversion, traveling along the same direction as the
pump, the z direction. The coordinate axes x and y are
chosen along the polarization direction of the o ray and
the e ray, respectively. In this experiment we consider
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FIG. 2. Detection bandwidth and crystal length dependent
entanglement.
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FIG. 3. Coincidence measurements for linear polarlzatlon
states when 6, was set equal to 45°,

collinear down-conversion, and the use of small apertures
makes state (5) a good one-dimensional approximation.
The function ¥(Ak) can be calculated from the standard
theory of OPDC [20]. Taking the origin of the coordi-
nates at the output surface of the down-conversion crys-
tal,

¢(Ak)=l[1—exp(—iAkL)]/(iAkL) , (6)

where L is the length of the crystal. Suppose that the
crystal is oriented so that the perfect phase-matching
condition Eq. (1) is satisfied by a set Q,, Q,, k,, and &,

(in this experiment we choose Q,=£,). The finite band-

width of the two-photon state, a result of the wave-
number condition release, allows a frequency distribution
such that @;=Q,+v and w,=Q,—v, where |v| << Q,,
Now expand k; and k, to first order in v using the

dispersion relations z
ki=k,+v(dk,/dQ,)=k
k,=k,—v(dk,/dQ, )=k,

0 —V/U, ,
—v/u, ,

where u, (u,) is the group velocity for the ordinary (ex-
traordmary) ray. Equation (6) can be written as

Pv)=[1—exp(—ivDL))/ivD , | N
where D=1/u,—1/u,.
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FIG. 4. Coincidence measurements for linear polarlz:«mon
states when 0+ 6,=90" was preserved.
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"The fields at the detectors 1 and 2 are given by
EiN(0)=a, [do fi(0)expl —ialt—1)]

X2€1~€'a-(w) 5

(®)

FASRIC) a,,fdwfz exp[-—tco(t—'rz)]

Xzez €a;(0),
j

where a; is the destruction operator of the photons,
j=o,e,€; is in the direction of the ith linear polarization
analyzer axis, i =1,2, and 7;=s;/c, where s, is the opti-
cal path from the output surface of the BBO crystal to
the ith detector, and c is the speed of light. ¢, and a, are
the complex transmission and reflection coefficients of the
beam splitter. The function f{w), i =1,2, is the spectral
transmission function of the filter in front of the ith
detector. If we do not have the filters, f(w) will be re-
placed by a constant. We will consider this case in the
beginning of the following discussion.
The average coincidence counting rate is given by

RC=(1/AT)f fOTdTldTZ(‘\1)|E<1—>E(2—>E<2+>E(1+>N,)
X8(T,—1T,,AT,)
=1/n [ fOTdTldT?I\P(tl,tz)le(Tl—TZ',ATC) ,
9
where t; =T;—7;yand T; is the de’tect‘ion time of tile, ith

detector. We assume 7=, i.e., equal distances from
the output surface of the crystal to the detectors, to sim-

_ plify the following discussion. 7 is the duration time of

the measurement, S'(¢,AT,) is a function that describes
the coincidence circuit, AT, is the time window of the
coincidence circuit; for |T1—T2l>ATc, S(t,AT,)=0,
and for |T,—T,|<AT,, S(¢+,AT,)=1. The counting
time T may be taken to infinity as a good approximation,
and if the coincidence time window is large enough we
can set S =1 for all ¢.

An effective two-photon wave function W(t,t,) is
defined in Eq. (9),

Wey,1,)=(0|E{VES" W) . (10)

The introduction of ¥(¢,f,) is very helpful for under-
standing the physics. Suppose we do not use the spectral
filters for the detectors; then the f;(w) function in Eq. (8)
is replaced by a constant. Substituting (5) and (8) 1nto
(10) 1t is stralghtforward to show that

, \Il(tl,vt2)=_ata,v(t1 +15)
X[& ’épféz-’é;u(tl—tz)
+8,8,8,8u(—t,+1,)], (11)
where
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v(t)=voexp(—icopt/2) , (12)
u(t)=ugexp(—iwyt/2)
X [ * dv[1—exp(—vDL)]/(ivDL)

u exp(—iwyt /2),
Xexp{—ivt)=1{DL >t >0
0 otherwise ,

(13)

where v,,u, are constants (normalization), and
w;=0,—Q,. We have approximated the pump to be a
plane wave in the calculation. If the pump beam were
taken to be a Gaussian with bandwidth o, the constant
vy would be replaced by a Gaussian function
vgexpl —alz,tz/ 8). Because of the narrow spectral band-
width of the pump beam, a plane wave is a good approxi-
mation for this experiment.

It is not difficult to understand the physics of the
effective two-photon wave function (11). In the first term
of the bracket the o ray goes to detector 1 and the e ray
goes to detector 2; the function u(#,—t,) means that
whenever detector 2 is triggered detector 1 will be trig-
gered at a later time, but no later than T, +DL. In the
second term the e ray goes to detector 1 and the o ray
goes to detector 2; the function u(—t;+¢,) means that
whenever detector 1 is triggered detector 2 will be trig-
gered at a later time, but no later than T|+DL. The
‘“joint triggering” probability at Ty and T, is a constant
during these periods, and is zero otherwise. We may de-
scribe each of the terms as a two-dimensional wave pack-
et in space time. The wave packets have an infinite large
width along the axis of ¢, +¢, and a finite width of DL
along the axis of t| —¢,, however, the wave packet in the
first term is centered at DL /2 and the wave packet in the
second term is centered at —DL /2. These interpreta-

I .

tions correspond to a reasonable physical picture for
type-II OPDC. The photons are created in pairs, one
with o polarization and the other with e polarization. If
the pump is uniform, the pairs are created with equal
probability at each point in the illuminated region of the
crystal. BBO is a negative uniaxial crystal, so that the e
ray exits the BBO crystal first. The maximum possible
time delay between the o ray and the e ray is
(L /u,—L /u,)=DL, which is the time delay to cross the
crystal.

It is clear from Egs. (11) and (13) that there is no in-
terference because the two terms in the bracket are not
overlapped in space time. Mathematically it is easy to
see. Physically the o-ray and the e-ray photons are well
distinguished in space time; it is impossible to find any
detection time T, and T,, except for T, =T,, in which
the two terms in Eq. (11) both hold. If T, > T, the detec-
tion only records the amplitude (o ray to D, )®(e ray to
D,); if T, < T, the detection only records the amplitude
(e ray to D,)®(o ray to D,), and the chances of having
the o-ray and e-ray photons exit from the BBO at ¢, =1¢,
(corresponds to T =T,) is infinitesimal. It is obvious
that p=0. The calculation of p is discussed below. In or-
der to have interference the two terms in Eq. (11) must be
overlapped in space time. It is very interesting to see that
the spin entanglement can be achieved by placing
narrow-bandwidth spectral filters in front of the detec-
tors. The f;(w) function in Eq. (8) may be taken to be
Gaussian,

fi(Q;—w)=fiexp[ —(Q;—w)*/20%], (14)

where we have assumed that the filters f; and f, are
peaked around ; and QQ,, respectively, with
1,+Q,=w,. For simplicity we take them to have the
same peak, shape, and bandwith o. The function u(¢) is

replaced by

u(t)=u0exp(—iwdt/2)f_°° dv f(Q,+v)f5(Q,—v)[1—exp(—vDL)]/(ivDL)exp( —ivt)

=uoexp({ —iwyt/2){erflot /2)—erf[(ct —DL)/21} /2DL , (15)

where erf(x) is the error function, and u is a normalized
constant. This function peaks at DL /2 and has a width
on the order of DL +8/¢. It is clear now that the
u(t;—t,) and u{—t,+1¢,) functions in Eq. (11) overlap;
the narrower detection bandwidth and the shorter crystal
length result in a larger overlap, so that a higher interfer-
ence visibility leads to p==2. It is not difficult to under-
stand the physics of this overlap based on the previous
discussions.

It is straightforward to calculate the coincidence
counting rate R, from Eq. (9) by using the effective wave
function (11). The result is shown in Eq. (2), and p is cal-
culated as,

p=2[""dtRe[u*(eu(~1]. (16)

The functions in (15) and (16) are easily evaluated numer-
ically and fit the data with no free parameters. The solid
lines in Fig. 2 are the theory curves for 5.65- an 0.5-mm
BBO crystals. The curves agree with the measured
values of p within reasonable experimental error. One
can achieve p==2 with a bandwidth less than 1 nm for a
0.5-mm BBO thin crystal.

III. TWO-PHOTON ENTANGLED STATES
FOR LINEAR, CIRCULAR,
AND ELLIPTICAL POLARIZATIONS

Using a 0.5-mm crystal and 1-nm bandwidth filters to
achieve p=2, measurements for two-photon polarization
entangled states were made. The use of a quarter-wave
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FIG. 5. Coincidence measurements for circular polarization.

Einstein-Podolsky-Rosen—-Bohm state.

plate and a beam splitter can easily demonstrate the
quantum-mechanical entanglement of arbitrary elliptical
polarization states in type-II down-conversion. The ex-
perimental setup is the same as in Fig. 1, except a
quarter-wave plate is placed after the 0.5-mm BBO crys-
tal. If the fast axis of the quarter-wave plate is oriented
at angle ® with respect to the X direction, the orthogonal
linear polarization states |X ) and |Y') are transformed to
orthogonal elliptical polarization states:

|X ) =rcos(®)|X')—isin(®)|Y’)
|Y ) ==sin(®)| X’} +icos(®)|Y") ,

where |X') and |Y’) are in the direction of the fast and
slow axes of the quarter-wave plate, respectively. After
the beam splitter, a two-photon entangled state with el-
liptical polarizations is produced, - -

(17).

cos(®) sin(®)
le)y=1/v2 [ l—-isin(d)) L | —i cos(P) L
sin(<®P) cos(P)
—icos(®) |, |isin(®) |, |~ (18)

The coincidence counting rate for linear polarization
analyzers is then,

800 — 7 —
® ©:-02=90°

B 91+02=90°
600 |-

400

Coincidence counts

200

" 180

(SP (deg)

120

240

FIG. 6. Coincidence measurements for elliptical polarization
state with quarter-wave plate oriented at 26.5°.

FIG. 7. Coincidence measurement for elliptical polarization
state with quarter-wave plate oriented at 71.5°.

R.=R_,[sin*(2® )cos*(0;+65)
+cos2(20)sin?(0,—85)] , 19

where 6; is the angle between the axis of the ith polariza-
tion analyzer and the |X/) direction. Care has to be tak-
en to follow the rules of natural coordinate system, espe-
cially for the reflected beam Note that the direction of
| X ) is opposite that of | X} )

If &=0° state (18). becomes state (4) which is a  two-
photon linear polarization entangled state. Quantum
correlations given by Eq. (3) were observed experimental-
ly [18]. Bell’s inequality violation of 22 standard devia-
tions was demonstrated [18].

For ®=45°, state (18) becomes the circular polariza-

tlon EPR-Bohm state,

_function of (8;+6,) instead of (8,

Y =1/v2(|R;)® R, +|L;)®IL,)) . (20)
The expected quantum correlation
R =R oc0s*(0;+6,)=R ocos (6] +6) 21)

was measured experimentally. Figure 5 reports the mea-
sured results. Note, in contrast to Eq. (3), here we have a
—0,). Circular polar-
ization correlations in atomic cascade decay were demon-
strated by Clauser [21].
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FIG. 8. Typical single detector counting rate.
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When the quarter-wave plate was set to ¢ =26.5° and
71.5° respectively, Figs. 6 and 7 report four typical mea-
surements that were taken wunder the conditions:
9116;=90°. The solid lines in these figures are the
theory curves of Eq. (19). The measured coincidence
counting rates agree with Eq. (19) within reasonable ex-
perimental errors. Note, here, we use the 8’ system to
define the angles for the analyzers. Contrary to the coin-
cidence counting rates, the single detector counting rates
do not change with the 9 angles for all the above mea-
surements, as is reported in Fig. 8.

IV. CONCLUSION

In summary: A pair of orthogonally polarized light
quanta is produced from type-II down-conversion in a
single beam. The pair enters a single port of a beam
splitter. There is no preferred polarization direction in
each of the three beams (incident, transmitted, and
reflected). However, if one of the photons, for example,
the transmitted one, is detected to be linearly polarized in

a certain direction, 8;, the other one can be predicted
with certainly to be linearly polarized in the direction 6,,
where 6, is not necessarily perpendicular to 6; The value
of 9, depends on the quantum entangled state prepared
by the observer. The measurement of the linear polariza-
tion (observable) for one particle determines the linear
polarization (of that observable) for the other particle
with unit probability. This is a typical two-particle en-
tanglement discussed in the early days of quantum
mechanics. In this paper we demonstrated the interesting
phenomenon that the entangled polarization state in
type-II OPDC depends on the detection bandwidth and
the length of the OPDC crystal.
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