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Abstract: The use of quantum correlations between photons to mea-
sure polarization mode dispersion (PMD) and chromatic dispersion is
investigated. Two types of apparatus are discussed which use coincidence
counting of entangled photon pairs to allow sub-femtosecond resolution for
measurement of both PMD and chromatic dispersion, as well asseparation
of even-order and odd-order chromatic effects in the PMD. Group delays
can be measured with a resolution of order 0.1 fs, whereas attosecond
resolution can be achieved for phase delays.
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1. Introduction: Dispersion Measurement - Classical versus Quantum

As optical communication networks migrate towards higher 40 Gbps and 100 Gbps data rates,
system impairments due to dispersion, especially polarization mode dispersion (PMD), become
a primary issue. This includes not only fiber PMD, but also contributions from switches, ampli-
fiers, and all other components in the optical path. The fiber PMD and component PMD tend to
accumulate in different manners as the size of the network grows. In the long length regime, the
differential group delay (DGD) due to fiber PMD has a known dependance on length, growing
as

√
L [1]. In a similar manner, contributions from chromatic dispersion increase linearly inL.

This known length dependence makes the dispersion of the optical fibers themselves relatively
straightforward to measure and to take into account.

In contrast, component PMD was until recently considered tobe too small in comparison to
fiber PMD to affect significant penalties at the system level.Since the introduction of recon-
figurable add-drop multiplexers (ROADMs), the number of components that could potentially
contribute to the PMD in a given system has increased significantly. Although the dispersive
contribution of each separate component is relatively small, together they are capable of accu-
mulating and of thereby making a significant contribution tothe total system impairment. It is
therefore important to be able to precisely and efficiently measure small values of DGD. How-
ever, since only fiber PMD was important in the past, no measuring techniques were developed
for efficient evaluation of small DGD values. With componentPMD starting to play a signifi-
cant role, developing high-resolution evaluation of smallPMD values in a single optical switch
or other small discrete optical component represents a new challenge to optical researchers that
must be addressed by modern optical metrology.

Polarization mode dispersion is the difference between wavenumbers of two orthogonal
states of light at fixed wavelength, or equivalently, a polarization-dependent variation of a
material’s index of refraction. A number of methods have been developed for measuring it
[2, 3, 4, 6, 5, 7, 8]. Many traditional techniques for measuring PMD rely on an interferometric
approach for high-resolution measurements of absolute values of optical delays. This approach
requires one to use a monochromatic laser source and to keep track of the number of interfer-
ence fringes. Therefore, the accuracy of the approach is limited by the stability of the interfer-
ometer, by the signal-to-noise level of the detector, and bythe wavelength of the monochromatic
radiation, leading to significant limitations. For example, the use of monochromatic classical
polarized light does not allow one to measure the relative delay between two orthogonally po-
larized waves in a single measurement, so several measurements at different frequencies must
be used to reconstruct the polarization dispersion properties of materials. The use of highly
monochromatic laser sources creates the additional problem of multiple reflections and strong
irregular interference that may have detrimental effect onmeasuring polarization dispersion.

White-light or low-coherence interferometry [8] is another widely used approach. The ulti-
mate resolution of such interferometric measurements willdepend on the spectral bandwidth
of the light source. Achieving sub-fs resolution in PMD measurement dictates the use of light
sources with bandwidth in excess of 200 nm. Generating lightof such a bandwidth with a
smooth spectral profile is not an easy task by itself. Spectral modulations from existing sources
with bumpy spectra produce ’ghost’ features during measurement, leading to complications in
dispersion evaluation. In addition, the visibility of interference with such super-broadband light
is diminished due to dispersion effects.

Overall, while classical techniques can provide high-resolution measurement of polariza-
tion mode dispersion they still have limitations in many areas that quantum-based techniques
can address. For example, entangled photon states intrinsically provide an absolute value for
polarization optical delay, in contrast to the conventional (classical) case, which is limited to
determination of delay modulo an integer number of cycles ofthe light. This is mainly due to



the fact that quantum interferometry exploits both phase and group velocity effects in the same
measurement [10, 11], a feat not possible in classical optics.

The current practical resolution of conventional dispersion evaluation techniques is limited
to a few femtoseconds (fs). The primary goal here is to use an interferometric setup with an
entangled photon source to measure the polarization mode dispersion of an object to sub-
femtosecond precision. Ideally, it would be desirable to measure chromatic dispersion with
the same device, while allowing for the polarization and chromatic effects to be easily separa-
ble. We will show that this is indeed possible. In addition, we will also be able to determine the
even-order and odd-order parts of the PMD’s frequency dependence.

After a review of background and notation in section 2, threemeasurement methods will be
discussed in sections 3-5. The apparatus of section 3 uses a single detector to make a classical
measurement; the system is illuminated with a broadband classical light source. In contrast,
quantum measurements are made using two detectors connected in coincidence with illumina-
tion provided by a source of entangled photon pairs (spontaneous parametric downconversion,
(SPDC)). We will examine two quantum measurement setups in sections 4 and 5.

The two quantum configurations will be distinguished from each other by referring to them
as type A or type B. They differ only in the presence or absenceof a final beam splitter before
detection, so they may both be implemented in a single apparatus by allowing a beam splitter
to be switched in or out of the optical path. Similarly, by adding an additional polarizer and
counting the singles rate at one detector instead of coincidence events, the classical setup may
also be implemented in the same device. Thus, a single apparatus could be made which is
capable of performing any of the three types of measurementsto be discussed. The apparatus
used for the type A setup has been introduced previously [10,11], so the chief novelty in this
work lies in the introduction of the type B measurement and inthe analysis of how the various
interference terms arise.

2. Chromatic Dispersion and Polarization Mode Dispersion

First consider a material for which the index of refraction is independent of polarization. The
frequency dependence of the wavenumberk = 2πn(λ )

λ is given by a dispersion relation, which
can be written near some central frequencyΩ0 as

k(Ω0±ω) = k0±αω +β ω2± γω3+ . . . (1)

for |ω | << Ω0. The coefficientsα, β , . . . characterize thechromatic dispersionor variation of
the refractive index with frequency. Explicitly,

k0 = k(Ω0), α =
dk(ω ′)

dω ′

∣

∣

∣

∣

ω ′=Ω0

, (2)

β =
1
2!

d2k(ω ′)
dω ′2

∣

∣

∣

∣

ω ′=Ω0

, γ =
1
3!

d3k(ω ′)
dω ′3

∣

∣

∣

∣

ω ′=Ω0

, . . . (3)

Rather than looking at the individual terms in the expansion(1), we may also collect together
all terms containing even powers ofω and all terms containing odd powers to arrive at an
expansion containing only two terms:

k(Ω0+ω) = keven(ω)+ kodd(ω), (4)

where
keven(ω) = k0+β ω2+O(ω4), (5)



and
kodd(ω) = αω + γω3+O(ω5). (6)

In the case of nonzeropolarization mode dispersion(PMD), the index of refraction varies
with polarization. We now have two copies of the dispersion relation, one for each independent
polarisation state:

kH(Ω0±ω) = kH0±αHω +βHω2+ . . . (7)

= kH,even(ω)+ kH,odd(ω) (8)

kV(Ω0±ω) = kV0±αVω +βVω2+ . . . (9)

= kV,even(ω)+ kV,odd(ω), (10)

whereH,V denote horizontal and vertical polarization.
To describe the PMD, we must define quantities that measure the differences between the

two polarization states:

∆k0 = kV0− kH0, ∆α = αV −αH , ∆β = βV −βH . (11)

The equations below will be written in terms of the quantities k, α, β relevant to a spatially
distributed dispersion; but for a lumped element of thicknessl , it is easy to rewrite the formulas
in terms of the relevant lumped quantities

∆φ ≡ l∆k0, ∆A≡ l∆α, ∆B≡ l∆β . (12)

Note that∆k0 = Ω0∆n(Ω0)
c is a measure of the difference in phase velocity between the two

polarization modes, while∆α and∆β are related to the difference in group velocity. Also, it
should be pointed out that the PMD and the chromatic dispersion are not entirely independent
effects; in particular, the PMD coefficients themselves (∆k0, ∆α, ∆β ) are frequency dependent.

In the quantum cases, it is convenient to also defineτ− = DL, whereL is the thickness of the
nonlinear downconversion crystal andD = u−1

0 −u−1
e is the difference of the group velocities

of the two polarizations inside the crystal. The spectral distribution of the downconverted pairs
is described by the function [12, 13]

Φ(ω) = sinc

(

1
2

τ−ω
)

, (13)

where the sinc function is defined by sinc(x) = sin(x)
x . The downconversion time scale,τ−, is

inversely proportional to the spectral width of the source,and therefore determines the precision
of the resulting measurements. The spectrum may be made wider by using a thinner nonlinear
crystal, but this occurs at the expense of reducing the intensity of the downconverted light.

3. Classical PMD Measurement

An apparatus equivalent to that shown schematically in fig. 1[8] is commonly used to measure
polarization mode dispersion. The illumination may be provided by any sufficiently broadband
light source. For easier comparison with the later sections, we will assume the illumination is
provided by type II parametric downconversion, but this is not necessary; since we use a single
detector, the entanglement of the downconverted photons will play no role.

Assume an arbitrary amount of H and V polarization out of the downconversion crystal, so
that the incident field in Jones vector notation is proportional to

∫

(

AH(ω)
AV(ω)

)

dω , (14)
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Fig. 1.Classical (single-detector) white-light setup for findingtotal PMD.

whereAH andAV are the incoming amplitudes of the horizontal and vertical components. After
a horizontal polarizer, we destroy the quantum state and just pick off one component. We can
think of it as a classical broadband source of horizontally polarized light,

∫

(

AH(ω)
0

)

dω . (15)

For path 1 (lower), the horizontally polarized light accumulates a phase corresponding to the
path lengthd1. For path 2 (upper), the horizontally polarized light passes through aλ

2 wave
plate with fast axis 45◦ from the horizontal, converting it into vertically polarized light,

(

0 1
1 0

)

∫

(

AH(ω)
0

)

dω =

∫

(

0
AH(ω)

)

dω . (16)

In addition, the vertically polarized light in path 2 experiences a phase corresponding to the
path lengthd2 and an adjustable delayδ = cτ2.

At the second beam splitter, the two components form a superposition of the form

J0 =
∫

AH(ω)

(

eik(ω)d1

eik(ω)(d2+δ )

)

dω , (17)

with k(ω) = ω
c (assuming the paths are in free space). In the absence of any sample after the

second beam splitter, this superposition will pass througha linear polarizer at 45◦, resulting in

J′0 =
∫

AH(ω)

2

(

eik(ω)d1 +eik(ω)(d2+δ )

eik(ω)d1 +eik(ω)(d2+δ )

)

dω , (18)

The intensity at the detector is then given by

I = |J′0|2 =
∫

|α(ω)|2 [1+ cos(k(ω)(∆d− δ ))] dω . (19)

Here,∆d = d1−d2 is the path length difference between the two arms.
If a birefringent sample of lengthl is introduced between the last beam splitter and the final

polarizer, an additional polarization-dependent phase shift is added to the vector in eq. 17:

J0 =

∫

AH(ω)

(

eik(ω)d1+kH(ω)l

eik(ω)(d2+δ )+kV(ω)l

)

dω . (20)



Fig. 2. Interferograms produced by apparatus of fig. 1 for samples ofdifferent thicknesses.
For a fixed thickness, the size of the shift may be used as a measure of the difference in
phase velocities of the two polarizations.

The resulting intensity at the detector is then:

I = |J′0|2 =
∫

|AH(ω)|2
[

1+ cos
(ω

c
(∆d− δ )−∆k(ω)l

)]

dω . (21)

For Type II downconversion, theAH(ω) and AV(ω) are both proportional toΦ(ω) =
sinc

(1
2τ−ω

)

. Plotting eq. 21 as a function of birefringent delayδ leads to interferograms such
as those shown in fig. 2. Each interferogram will be phase shifted (moving the positions of
the peaks and troughswithin the envelope) due to the zeroth order difference in dispersion
∆k0, while the envelope as a whole will be shifted horizontally due to the first order difference
in dispersion∆α and broadened due to the second order difference∆β . The interferograms
shown in fig. 2 are shifted by different amounts due to the use of different sample thicknesses.
In this plot, a 200 nm bandwidth centered at 1550 nm was assumed, with a coherence length of

xc =
λ 2

0
∆λ = 12 µm.

4. Type A Quantum Measurement

The goal now is to extract the polarization mode dispersion of an object with a higher precision
than is possible with the classical apparatus of the previous section. In addition, we would like
to be able to measure the even and odd orders of chromatic dispersion for each polarization.

The setup [10, 11] is shown in fig. 3. The downconversion is type II so that the two photons
have opposite polarization (H andV). The photons have frequenciesΩ0±ω , where 2Ω0 is the
pump frequency. Controllable birefringent time delaysτ1 andτ2 are inserted before and after
the beam splitter. Objects may be placed both before and after the beam splitter, of lengthsl1
and l2, respectively. Polarizers at anglesθ1 andθ2 from the horizontal are placed before the
two detectors. In the following, we will takeθ1 = θ2 =

π
4 and assume that the beam splitter is

50/50. Information about which polarization state travelsin which branch of the apparatus will
therefore be erased, allowing interference to occur with maximum visibility.

Rather than the Jones matrix formalism used in the previous section, it will be more conve-
nient here to use creation and annihilation operators for horizontally and vertically polarized
photons. The portion of the output from the downconversion process that is relevant to our
purposes is the biphoton state

|Ψ〉=
∫

dω Φ(ω)â†
H(Ω0+ω)â†

V(Ω0−ω)|0〉, (22)



which will serve as the incident state of our setup. The positive-frequency parts of the fields at
detectorsD1 andD2, respectively, can be written in the forms

Ê(+)
1 (t1) =

1
2

∫

dω
{

âH(ω1)e
ikH (ω1)l1 + âV(ω1)e

i[kV (ω1)l1+ω1τ1]
}

e−iω1t1 (23)

Ê(+)
2 (t2) =

1
2

∫

dω
{

âH(ω2)e
ikH (ω2)(l1+l2) (24)

+âV(ω2)e
i[kV (ω2)(l1+l2)+ω2(τ1+τ2)]

}

e−iω1(t2+τ).

The coincidence rate is then computed by integrating the correlation function

G(2)(t1, t2) =
∣

∣

∣
〈0|E(+)

1 (t1)E
(+)
2 (t2)|Ψ〉|2

∣

∣

∣

2
(25)

over the characteristic time scaleT of the detectors:

Rc(τ1,τ2) =

∫ T/2

T/2
dt1dt2G(2)(t1, t2). (26)

SinceT is generally much larger than the downconversion timeτ−, we may safely simplify by
takingT → ∞.

Using eqs. 22-26, the coincidence rate may be written in the general form ([12])

Rc(τ1,τ2) = R0{1+CM(τ1,τ2)} , (27)

whereR0 is a constant (delay-independent) background term andC−1 =
∫

dω |Φ(ω)|2 = 2π
τ− .

The dependence on the time delays is contained in the modulation term

M(τ1,τ2) =
1
2

∫

dω |Φ(ω)|2e−i[∆k(ω)−∆k(−ω)]l1−2iωτ1 (28)

×
{

ei∆k(−ω)l2+i(Ω0−ω)τ2 +e−i∆k(ω)l2−i(Ω0+ω)τ2
}

=

∫

dω |Φ(ω)|2 (29)

× cos{[∆k(ω)−∆k(−ω)] l1+∆k(ω)l2+2ωτ1+(Ω0+ω)τ2} ,

where the second form follows by changing the sign of the integration variable in the first
term of the previous line. It can be seen that even-order PMD terms arising from the pre-beam
splitter object cancel. Thus, measurements made with the object before the beam splitter will
give us the odd-order PMD, and measurements made with the object after the beams splitter
give the total PMD; making both measurements and then takingthe difference will provide the
even-order PMD. We can see the roles of the even and odd parts more clearly by writing:

M(τ1,τ2) =

∫

dω |Φ(ω)|2cos{2∆kodd(ω)l1+∆k(ω)l2+2ωτ1+(Ω0+ω)τ2} (30)

=

∫

dω |Φ(ω)|2 (31)

× cos{∆kodd(ω)(2l1+ l2)+∆keven(ω)l2+2ωτ1+(Ω0+ω)τ2} .

Using the identity cos(A+B) = cosAcosB− sinAsinB, we can write this as

M(τ1,τ2) =

∫

dω |Φ(ω)|2{cos[∆kodd(ω)(2l1+ l2)+ω(2τ1+ τ2)]cos[∆keven(ω)l2+Ω0τ2]

−sin [∆kodd(ω)(2l1+ l2)+ω(τ1+ τ2)]sin[∆keven(ω)l2+Ω0τ2]} . (32)
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Note that the integrand in the second term is odd inω , so the integral over that term vanishes.
Therefore, this simplifies to

M(τ1,τ2) =

∫

dω |Φ(ω)|2cos[∆kodd(ω)(2l1+ l2)+ω(2τ1+ τ2)]

× cos[∆keven(ω)l2+Ω0τ2] . (33)

We see that the even- and odd-order terms have separated intodifferent cosine terms.
In the special case that∆β and all higher order terms vanish, the integral of the previous line

can be done explicitly:

M(τ1,τ2) =
2π
τ−

cos[∆k0l2+Ω0τ2]Λ
[

∆α(2l1+ l2)+ (2τ1+ τ2)

τ−

]

. (34)

In the last line we have used the result
∫

dω sinc2(aω)cos(ωτ) =
π
a

Λ
( τ

2a

)

, (35)

where

Λ(x) =
{

1−|x|, |x| ≤ 1
0, |x|> 1

(36)

is the unit triangle function.
The coincidence rate is then

Rc(τ1,τ2) = R0

{

1+ cos[∆k0l2+Ω0τ2]Λ
[

∆α(2l1+ l2)+ (2τ1+ τ2)

τ−

]}

. (37)

This result is consistent with equation A31 of [10], with thecaveat that an extra time delay
τ1 has been added here. We now have two possibilities: we can scan overτ1 while holdingτ2

fixed, or vice-versa. If we scan overτ1 with τ2 = 0, we find a triangular dip similar to the HOM
dip, as shown in fig. 4. The first order term in the PMD,∆α shifts the triangular envelope left
or right, so that the bottom of the dip is atτ1 =−∆α

2 (2l1+ l2); thus∆α may be determined by
measuring the location of the minimum. The absolute value ofthe factor cos(∆k0l2) in front of
the triangle function gives the visibility of the dip; so measuring the depth of the dip allows∆k0

to be determined. Note that (depending on the sign of cos(∆k0l2)) the ”dip” may actually be a
peak.
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Alternatively, we may scan overτ2 while holdingτ1 = 0. This leads to an oscillating inter-
ference fringe pattern within the triangular envelope, similar to those of fig. 2. The shift of the
triangular envelope allows∆α, the first order term in the PMD, to be determined as before. In
this case, rather than determining visibility, the zeroth order term∆k0 horizontally shifts the
fringe pattern by distanceτ2 =

∆k0l2
Ω0

within the envelope, allowing determination of∆k0 from
the size of this shift. To see clearly the effects of each order of dispersion, fig. 5 shows examples
of such scans in the presence of zeroth-order and first-orderdispersion separately. Although this
plot looks similar to fig. 2, the fringes now occur with much higher frequency asτ2 is scanned,
allowing evaluation of the phase delays (the∆k0 term) to an accuracy on the order of attosec-
onds (10−18 s) [10]. Group delays from the∆α term down to the order of 0.1 fs, an order of
magnitude better than the best accuracy obtainable using the classical method.

Note that only thedifferencesof the horizontal and vertical polarization parameters (∆α, ∆β ,
etc.) appear in the formulas above. The resulting interferogram is independent of the values of
the parameters for fixed polarization(αH , αV , etc.) and so are insensitive to non-polarization-
dependent dispersive effects.

In principle, Fourier transforming experimental data for the coincidence rate and then fit-
ting parameterized curves to it will allow the determination of higher order PMD parameters.
However, this requires a large quantity of data to be obtained at high precision. By adding an
additional beam splitter to the apparatus in the next section, we will arrive at a better method,
which allows us to determine the same information, plus considerably more.

5. Type B Quantum Measurement

The goal here is to see if additional information may be obtained with a variant of the previous
apparatus that mixes the final beams via an additional beam splitter. This variation is inspired
by the setup of ref. [14], in which even and odd portions of thechromatic dispersion were
separated into different parts of an interferogram, allowing them to be studied independently of
each other.

Consider the setup in fig. 6. This differs from the setup of theprevious section (fig. 3) only
by the addition of an extra beam splitter before the detectors and an additional nonbirefringent
delayτ in one arm, after the first beam splitter. Two birefringent samples of lengthsl1 andl2 are
placed before and after the first beam splitter. Birefringent delaysτ1 andτ2 are present before
and after the beam splitter as well, and a nonbirefringent delay τ is added to one of the two
arms after. For the sake of definiteness, assume thatτ1 andτ2 delay the vertical (V) polarization
and leave the horizontal (H) unaffected. The system is illuminated with type II downconversion
beams. The pump frequency is at 2Ω0, while the signal and idler frequencies will be written as
Ω0±ω . We will make use of the fact that the downconversion spectral function is symmetric,

Φ(ω) = Φ(−ω). (38)

We will identify theeando polarizations withV andH respectively.
It should be emphasized that in the notation used here,τ is anabsolutedelay, so it must be

positive. However,τ1 andτ2 arerelative delays of the vertically polarized photon compared to
the horizontal, and soτ1 andτ2 may be positive or negative.

The coincidence rate may again be written in the general formof eq. 27. The delay-dependent
modulation term will now be

M(τ1,τ2,τ) =
∫

dω |Φ(ω)|2e−2iωτ1e−2i∆kodd(ω)l1 (39)

×
{

1−e−i[(kV (Ω0+ω)−kV(Ω0−ω))l2+2ω(τ+τ2)]+ei[(kH (Ω0+ω)−kV(Ω0+ω))l2−(Ω0+ω)τ2]

+ei[(kV (Ω0−ω)−kH (Ω0−ω))l2+(Ω0−ω)τ2]−ei[(kH (Ω0+ω)−kH (Ω0−ω))l2+2ωτ]
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−ei[(kH (Ω0+ω)+kV (Ω0−ω))l2+2Ω0τ+(Ω0−ω)τ2]−e−i[(kH (Ω0−ω)+kV(Ω0+ω))l2+2Ω0τ+(Ω0+ω)τ2]

+ei[(kH (Ω0+ω)−kH (Ω0−ω)−kV(Ω0+ω)+kV(Ω0−ω))l2−2ωτ2]
}

.

5.1. Linearized dispersion.

To better understand eq. 39, let’s momentarily ignore the quadratic and higher order terms in
the dispersion relations. Then we can write:

kV(Ω0+ω) = kV0+αV ω (40)

kH(Ω0+ω) = kH0+αH ω (41)

∆k(Ω0+ω) = ∆k0+∆α ω (42)

Even and odd parts become:

kV,odd= αV ω kV,even= kV0

kH,odd = αH ω kH,even= kH0

∆kodd= ∆α ω ∆keven= ∆k0

This linear approximation allows all of the integrals of eq.39 to be done analytically. For
Φ(ω) = sinc

( τ−ω
2

)

, repeated use of the integral

∫

dω sinc2(aω)eiω(τ+c) =
π
a

Λ
(

τ + c
2a

)

(43)

leads to the result:

M(τ1,τ2,τ) =
2π
τ−

{

Λ
(

2(τ1+∆α l1)
τ−

)

(44)

+2Λ
(

2τ1+∆α(2l1+ l2)− τ2

τ−

)

[cos(∆k0l2+Ω0τ2)− cos((k0,H + k0,V)l2+Ω0(2τ + τ2))]

−Λ
(

2(τ1+∆α l1+αV l2+ τ + τ2)

τ−

)

−Λ
(

2(τ1+∆α l1−αH l2− τ)
τ−

)



+Λ
(

2(τ1+∆α(l1+ l2)+ τ2)

τ−

)}

=
2π
τ−

{

Λ
(

2(τ1+∆α l1)
τ−

)

(45)

+4Λ
(

2τ1+∆α(2l1+ l2)− τ2

τ−

)

sin(k0V l2+Ω0(τ + τ2))sin(k0H l2−Ω0τ)

−Λ
(

2(τ1+∆α l1+αV l2+ τ + τ2)

τ−

)

−Λ
(

2(τ1+∆α l1−αH l2− τ)
τ−

)

+Λ
(

2(τ1+∆α(l1+ l2)+ τ2)

τ−

)}

.

In this result, note that the effects of the even and odd orders separate and play different
roles: the location of each dip is determined by the odd part,while the depth of one of the dips
relative to the others is controlled by the even part. The physical origin of each of these terms
may be identified. The five triangle functions correspond to the five possible ways in which it
becomes impossible from the relative timing of detection events in the two detectors to identify
which photon took which path. First note that the delay between theV andH photons arising
beforethe first beam splitter is

∆τpre ≡ τV − τH = ∆α l1+ τ1. (46)

There are four possible ways in which the delayafter the first beam splitter may compensate
this pre-beam splitter delay, leaving a total delay of zero between the two photons. These are
enumerated in the table of figure 7, which gives the total post-beam splitter delay∆τpost for
each case in the final column. Setting

∆τpre+∆τpost= 0 (47)

for these four possibilities correctly identifies the center of four of the triangle functions in eq.
45; at these values, there is no path information available because the two photons arrive at the
detector simultaneously, allowing for complete destructive interference between paths.

The remaining triangle function (the second one in eq. 45) arises in a slightly different fash-
ion. Here the time delay between the two photons is nonzero, but has a value that makes identi-
fication of the path impossible to identify. When the vertically-polarized photon V follows the
lower path after the first beam splitter and the horizontally-polarized photon H takes the upper,
the total relative delay between the two photons is

∆τtotal ≡ τV − τH = ∆α l1+ τ1 = ∆τpre. (48)

But when the two photons are interchanged (H along the lower path, V along the upper), the
relative delay is

∆τtotal = ∆α (l1+ l2)+ (τ1+ τ2). (49)

If we require these to be negatives of each other (in other words, requiring∆τpost=−2∆τpre) as
in ref. [10], we find the condition∆α (2l1+ l2)+(2τ1+τ2) = 0. This leads to∆τtotal =−∆τpre

and correctly identifies the location of the remaining triangle function. Because the photons
arrive at different times and with different phases we see that in this case interference can
occur, leading to the sines or cosines that modulate this term.

A number of specific methods may now be envisioned for extracting the chromatic and po-
larization mode dispersion parameters from this setup using various combinations of fixed and
scanned delays. For example, suppose that we scan overτ1, while holdingτ andτ2 fixed. Then
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each of theΛ factors above gives a triangular spike (of width 2τ−) in the coincidence rate cen-
tered at the value ofτ1 for which the argument ofΛ vanishes. We can then easily read off the
locations of these spikes from eq. 45. Explicitly, the various terms of eq. 45 indicate that there
should be triangular spikes centered at the values

τ1 = −∆α l1,
1
2
[τ2−∆α (2l1+ l2)] , −(αV l2+∆α l1+ τ + τ2) , (50)

αH l2+ τ −∆α l1, τ2−∆α(l1+ l2).

So suppose we have a sample only after the beam splitter (l1 = 0) and then we do three scans
overτ1, each with different values ofτ andτ2:

(i) Take|τ2| large, withτ = 0. Then theτ2-dependent peaks move far from the origin, off the
edge of the plot. We will be left with peaks atτ1 = 0 and atτ1 = αH l2; from the locations of
the latter we can read offαH .

(ii) Take |τ2| and|τ| both large, but with|τ2 + τ| small. Then we will be left with peaks at
τ1 = 0 andτ1 = αV l2, so we can read offαV .

(iii) Take |τ| large, withτ2 = 0. We will be left with peaks atτ1 = 0, and∆α l2, so we can
read off∆α.

Since it is more difficult to achieve large values for the birefringent delays than for the non-
birefringent ones, this procedure may not always be the mostpractical. An alternative version
will be described below when we examine a special case.

Finally, notice that some of the triangular spikes will havetheir heights modulated by cosine
terms. The arguments of the cosines depend onk0, so that measuring the heights of these spikes
relative to the others will allow∆k0 to be determined as well.



Fig. 8.Effect of quadratic dispersion term∆β on a pair of triangular peaks. The red curve
is for ∆β = 0, the lower curves correspond to increasing values of∆β for fixed∆α and
∆k0.

5.2. Adding in quadratic dispersion

When the quadratic (∆β ) term is added back in, analytic expressions can no longer beobtained
and numerical simulations must be done. An example is shown for one pair of triangular peaks
in fig. 8. In the figure, unrealistically large values of∆β were used to make the effect clearly
visible. For∆β = 0 (red curve), the peaks have the same triangular form predicted earlier. As
∆β increased for fixed∆α and∆k0 the top of the triangle flattens and gains small oscillatory
features; the triangle also broadens slightly.

For realistic values of∆k0 and∆β , the alteration of the peak’s height by∆β is negligible, so
that the height of the peak can still be used to measure∆k0. The most straightforward method
to separate the value of∆β from ∆k0 is to fit a parameterized curve to the data and look for the
values of the parameters∆k0 and∆β that give the best fit.

Summarizing, we have seen that the type B quantum method allows us to measure the quan-
tities kH,odd, kV,odd, ∆k, ∆kodd, ∆kevenbut does not provide a means to measurekH,even, kV,even.

5.3. Example: Postponed delay only

As a special case, we can look at the situation where there is no sample or delay before the
first beam splitter. This is accomplished by settingl1 = τ1 = 0. (In reality, the downconversion
crystal itself acts as a birefringent sample before the beamsplitter, but a fixedτ1 may be inserted
to cancel it, so that without loss of generality, we can stilltake the combination∆αcrystall1+τ1 =
0.)

The setup now looks as shown in fig. 9, and the coincidence rateas given by eqs. 27 and 45
is:

R(τ,τ2) = R0

{

2+4Λ
(

∆α l2− τ2

τ−

)

sin[k0V l2+Ω0(τ + τ2)]sin[k0H l2−Ω0τ]

−Λ
(

2(αV l2+ τ + τ2)

τ−

)

−Λ
(

2(αH l2+ τ)
τ−

)

+Λ
(

∆α l2+ τ2

τ−

)

.

}

Holding the remaining birefringent delayτ2 fixed and scanning over the nonbirefringent
delayτ, there should be dips at

τ =−αV l2− τ2 and τ =−αH l2, (51)

as in fig. 10. So, running two scans overτ using two different values ofτ2, the location of the
dip that remains at the same position in both scans gives us the value ofαH . The other dip
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Fig. 10.Scan overτ for fixedτ2, when there is an object only after the first beam splitter.

moves between the scans; measuring its location during either scan will then give the value of
αV . ∆α is then given by the difference between the two measured values.

If it is possible to arrange a value ofτ2 large enough to satisfyτ2 = ∆α l2, then the term with
the sines will be large, in which case we may also be able to extractk0H andk0V by scanning
τ over a range of values for which the other triangle functionsvanish and fitting the resulting
data curve to the function sin[k0V l2+Ω0(τ +∆α l2)]sin[k0H l2−Ω0τ)]. Alternatively, if only
∆k0 is needed (notk0H andk0V separately), it may be simpler to remove the final beam splitter
(turning the type B apparatus back into type A), then scanning overτ2 and find∆k0 from the
shift in oscillation fringes via equation eq. 37.

6. Conclusions

We have demonstrated that it is possible to measure the even and odd-order contributions to
the chromatic dispersion and the polarization mode dispersion, and that this can be done with
higher accuracy that can be accomplished with classical white-light interferometry or time-of-
flight methods.

In principle, the classical method and the type A quantum method both allow the determi-
nation of the even and odd parts of the PMD, although the precision of the Type A method is
much higher. The Type B quantum method again provides the same information, but in addition



allows the odd part of the chromatic dispersion to be measured for each polarization separately.
In each case, though, separating the various orders within the even-order part (separating ze-
roth order from second order, for example) or within the odd-order part is a much more difficult
problem, which has yet to be solved in a fully satisfying manner. As a final point, note that
both the type A and type B devices are truly quantum, in that anentangled photon source is
required in order for them to operate. If a classical source is used then the frequencies in the
two branches will not appear in anticorrelated pairsΩ0+ω andΩ−ω (for example in eqs. 28
and 39), so that the required cancellations of even or odd orders will not occur in the various
terms.
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