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We report ellipsometric measurements made on semiconductor samples using photon-correlated beams
produced by the process of spontaneous parametric down-conversion. Such a source yields higher accuracy
than its quantum-limited conventional counterpart. We also show that our approach has the added advantage of
not requiring an external reference sample for calibration.
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I. BACKGROUND

Since all optical measurements are limited by quantum
noise, which dominates at low light levels, there has been a
strong interest in developing nonclassical optical sources
with sub-Poisson photon statistics that offer sub-shot-noise
accuracy. One implementation that has been considered for
metrology applications is based on the use of two optical
beams, each with Poisson-distributed photons, but also with
a fully correlated joint photon counting distribution. Such
correlated-photon beams have been generated, for example,
by spontaneous parametric down-conversion(SPDC) in a
nonlinear optical crystal, and used for applications including
quantum cryptography[1], teleportation[2], and metrology
[3,4]. If one of the beams is reflected from, or transmitted
through, a sample, then measurement of the photon coinci-
dence rate, together with the mean photon counts in each
beam, yield estimates of the sample reflectance/transmittance
with accuracy greater than the conventional measurement us-
ing a single beam[5–9]. In this paper, we consider the use of
photon-correlated beams in ellipsometry.

Ellipsometry [10–15] is a technique in which the polar-
ization of light is used to determine the optical properties of
a material(sample) and infer information such as the thick-
ness of a thin film. The sample is characterized by two pa-
rametersc=arctanu r̃2/ r̃1u andD=argsr̃2/ r̃1d wherer̃1 and r̃2

are the sample’s eigenpolarization complex reflection coeffi-
cients[11]. In a conventional ellipsometer, these parameters
are extracted by manipulation of the polarization state of the
incident or the reflected/transmitted light and measurement
of the optical intensities or the photon counting rates.
Clearly, such measurements are limited by shot noise, par-
ticularly at low light intensities or when using ellipsometers
employing a nulling technique. The use of photon-correlated
beams in ellipsometry has been previously reported and re-
ferred to as “quantum ellipsometry”[16,17]. It was shown
that this technique alleviates the need for calibration using an
external reference sample.

In this paper, we report experimental quantum ellipsomet-
ric measurements made on standard optical samples. We also

estimate the accuracy advantage attained by the use of quan-
tum relative to conventional ellipsometry. Section II of the
paper reviews the theory of correlated-photon ellipsometry, a
form of quantum ellipsometry. Although correlated-photon
pairs may be generated by a variety of means, correlated-
photon ellipsometry in this paper refers to the use of photon
pairs generated by SPDC. In Sec. III we present experimen-
tal results obtained from two semiconductor samples demon-
strating how the technique operates. Finally, in Sec. IV we
discuss the role that quantum noise plays in obtaining accu-
rate measurements for both conventional and non-classical
sources of light.

II. CORRELATED-PHOTON ELLIPSOMETRY

It has previously been shown that twin photons generated
by SPDC can be used in a coincidence-detection scheme to
achieve the absolute calibration of an optical detector
[18–20]. In this section, we demonstrate how the addition of
the polarization degree of freedom allows accurate ellipso-
metric measurements to be obtained.

In correlated-photon ellipsometry, a form of quantum el-
lipsometry, a laser(pump) beam illuminates a nonlinear op-
tical crystal(NLC). A portion of the pump photons are con-
verted into pairs, traditionally known as signal and idler,
which conserve energy(frequency matching) and momentum
(phase matching) [21,22]. For our purposes, we choose the
SPDC to be in a configuration known as “type-I noncol-
linear”. Type I refers to the fact that the signal and idler
photons have parallel polarizations; the term noncollinear in-
dicates that the signal and idler photons are emitted in two
different directions.

The light at the output of the NLC is in a polarization-
product state and is described by

uCl = uHHl, s1d

whereH represents horizontal polarization. In one arm of the
setup, as shown in Fig. 1, the idler beam first passes through
linear polarizerP followed by an SU(2) elementfSUs2d1g,
which can be represented by the action of a polarization ro-
tator sandwiched between two wave retarders, and can per-
form any general unitary operation. Then, the idler beam*Electronic address: alexserg@bu.edu
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reflects off the sample of interestfSsc ,Ddg before it encoun-
ters a second SU(2) elementfSUs2d2g, followed by a linear
polarization analyzerA and then a single-photon photodetec-
tor D2. The 232 Jones matrix representation for such an
operation is given by

TSUs2dj
= S cosu je

isf j+a jd − sin u je
isf j−a jd

sin u je
−isf j−a jd cosu je

−isf j+a jd
D , s2d

whereu js j =1,2d represents the angle of the axis of a polar-
ization rotator with respect to the horizontal direction, while
f j anda j represent the retardation imparted by wave retard-
ers. Please note that, upon cascading the Jones matrices for
the overall optical system,f2 anda1 become common terms
that vanish at detection. It is also important to mention that
beam splitters are not included in the apparatus because they
are additional sources of noise at low light levels. In the
other arm, the signal beam is simply detected by single-
photon photodetectorD1. Generally, narrowband interference
filters are placed in front of each detector in order to select
the degenerate-frequency photons. The detectors, two ava-
lanche photodiodes operating in the Geiger mode, are part of
a circuit that records the coincidence rate of photon pairs.

It can be shown that for the state described in Eq.(1), the
obtained coincidence rate,Nc, at the detectors is given by
[17]

Ncst;c,D,f1,a2,u1,u2d = CIinstdh1h2ur̃1u2utan ceisD+f1+a2d

3cosu1 cosu2 − sin u1 sin u2u2,

s3d

whereI instd is the pump intensity and is assumed to vary at a
time scale slower than the coincidence counting time, the
constant of proportionalityC includes the efficiency of
down-conversion, andh1 andh2 are the quantum efficiencies
of D1 and D2, respectively. If the pump intensity were not
time varying, one could determine the ellipsometric param-
eters of the sample in a straightforward fashion simply by
choosing different angle settings foru1, for example, while
scanningu2. However, this measurement protocol fails since
the pump intensity does depend on time. To address this
problem, we have developed a procedure that employs an
auxiliary measurement, the singles rate. This rate has been

defined to be proportional to the intensity of the pump and
the quantum efficiency of the detector[3]. Let us define the
singles rate for the sample-free optical path to be

N1 = CIinstdh1, s4d

while the singles rate for the optical path with the sample
present is given by

N2sc,D,f1,a2,u1,u2d = CIinstdh2ur̃1u2utan ceisD+f1+a2d

3cosu1cosu2 − sin u1sin u2u2.

s5d

By dividing the expression in Eq.(3) by that in Eq.(4), we
obtain a normalized coincidence rateNn given by

Nnsc,D,f1,a2,u1,u2d =
Nc

N1

= h2ur̃1u2utan ceisD+f1+a2d cosu1cosu2

− sin u1 sin u2u2. s6d

To determine the ellipsometric parameters of the sample,
we can choose the following strategy. Foru1 set to 90° and
u2 scanned,

Nnsc,D,f1,a2,90,u2d = h2ur̃1u2 sin2 u2 ; N90. s7d

Similarly, for u1 set to 0° andu2 scanned,

Nnsc,D,f1,a2,0,u2d = h2ur̃1u2tan2c cos2 u2 ; N0. s8d

From these equations it is clear thatc is

c = arctanÎS N0

N90
Dcot2 u2. s9d

To determineD we can setf1 to −90°,a2 to 0°, u1 to ±45°,
and scanu2. The resulting expression is

Nnsc,D,90,0, ± 45,u2d = FN90

2
+

N0

2
± h2 tan c

3cossD − 90dcosu2 sin u2G .

s10d

In general, the value chosen forf1 depends on the sample.
For example, for a bulk dielectric material the value ofD
will be close to either 0° or 180°, depending on whether the
angle of incidence of the light is above or below the Brew-
ster angle[12]. In this region, the cosine function is not
sensitive to small changes. A 90° phase shift is therefore
added to increase this sensitivity.

We see from the aforementioned protocol that the ellipso-
metric parameters are determined without the necessity of
calibration by an external reference sample, independently of
whether the pump intensity might vary in time, and without
knowledge of the values of the quantum efficiencies of the
detectors. Furthermore, since down-conversion allows for a
statistical copy of a beam to be created without a beam split-
ter, it is possible to eliminate noise sources inherent in the
system without introducing errors. This is advantageous for

FIG. 1. Correlated-photon ellipsometry. SUs2d1,2 represents the
allowed polarization devices used,P a linear polarizer,A a linear
polarization analyzer, andD1,2 single-photon detectors with effi-
cienciesh1,2. The sampleS is characterized by the ellipsometric
parametersc andD, as defined in the text.
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low light levels, as we will show later, and is a feature
unique to the quantum nature of correlated-photon ellipsom-
etry.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results showing
how correlated-photon ellipsometry can be used to obtain
values ofc and D without calibration by an external refer-
ence sample. These values are comparable to those obtained
from traditional ellipsometers.

The actual experimental setup used to perform our mea-
surements differs little from the one shown in Fig. 1. Our
source was a 351-nm cw Ar+ laser. The NLC wasb–barium
borate, typically referred to as BBO, of 1 mm thickness. The
SU(2) element following the sample was a half-wave re-
tarder while the one preceding it was chosen to be a cascade
of half-wave and quarter-wave retarders. Interference filters
centered at 702 nm with 10-nm bandwidths were placed be-
fore each detector. We define the anglesu1 andu2 to be the
angles of the axes of the half-wave retarders before and after
the sample, respectively, with respect to the horizontal direc-
tion.

Using the procedures specified in Eqs.(7)–(10), ellipso-
metric data were obtained for a bulk single-crystal Si sample
oriented such that the angle of incidence was 28°. The results
are represented by the interferometric curves in Fig. 2. The
labelsH, V, and RHC correspond to a horizontal, vertical,
and right-hand-circular input polarization state of the light.
Each sinusoidal pattern represents the sample’s response to
the particular polarization state. Because the amplitude for
the V curve is smaller than that for theH curve, we see that
the Si sample preferentially absorbs vertical polarization
over horizontal. As we know from Eq.(9), theseH and V
curves provide us with our value forc. The third interference
pattern in Fig. 2 represents the sample’s response to right-
hand-circular polarization. Since Si is a bulk dielectric, we
expect that the phase shiftD imparted upon reflection should
be close to either 0° or 180°.

With this in mind, the experimentally determined values
for c andD were compared to those obtained with calcula-
tions carried out using the appropriate Sellmeier dispersion
formula [23,24]. Using our correlated-photon ellipsometer,
we determined thatc=s41.70±0.02d° andD=s178.4±0.3d°.
According to the theoretical model, the expected values are
c=41.2° andD=179.8°. We carried out a second experiment
using a bulk GaAs sample. Under the same experimental
conditions, GaAs has similar optical properties to Si. In this
case we obtained experimental values ofc=s41.20±0.03d°
and D=s178.6±0.2d°. The expected theoretical values are
c=41.2° andD=179.7°. The results are shown in Fig. 3.

Using correlated-photon ellipsometry, the experimentally
determined values ofc andD are shown to be in good agree-
ment with the expected theoretical values. The small discrep-
ancy from the expected values is attributed to possible errors
arising from angular misalignment of the optical components
and of the angle of incidence. These types of problems have
been shown to be common sources of errors in ellipsometry,
and the standard techniques developed to reduce these errors
can be similarly applied here[11].

IV. STATISTICAL ACCURACY

In this section, we compare the accuracy of the measured
ellipsometric parameters obtained using a conventional co-
herent laser beam to that using correlated-photon beams. For
this purpose, we regard the polarization system in the dashed
box in Fig. 1 as an effective reflector(or beam splitter) with
intensity reflectanceR that is a function ofc, D, and the
polarization settings(of course, no NLC in the conventional
method). We derive expressions for the signal-to-noise ratio
(SNR) of R for systems that employ a conventional laser
beam as well as for systems that use correlated-photon
beams(CPB). We subsequently determine the relative error
in c and D for both cases. Comparison shows that the
correlated-photon beam implementation yields higher accu-
racy under certain conditions.

FIG. 2. Coincidence interference patterns obtained from a Si
sample. The labelsH, V, andRHC correspond to a horizontal, ver-
tical, and right-hand-circular input polarization state of the light.
Each sinusoidal pattern represents the sample’s response to the par-
ticular polarization state.u2 is the angle of the axis of the half-wave
retarder placed after the sample, with respect to the horizontal di-
rection. The solid sinusoidal curves correspond to the expected the-
oretical fit obtained from Eq.(6).

FIG. 3. Coincidence interference patterns obtained from a GaAs
sample. The labelsH, V, andRHC correspond to a horizontal, ver-
tical, and right-hand-circular input polarization state of the light.
Each sinusoidal pattern represents the sample’s response to the par-
ticular polarization state.u2 is the angle of the axis of the half-wave
retarder placed after the sample, with respect to the horizontal di-
rection. The solid sinusoidal curves correspond to the expected the-
oretical fit obtained from Eq.(6).
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We begin with the conventional(conv) measurement. The
detector, with quantum efficiencyh, counts the total number
of photoeventsN1 andN2 in time durationT, in the absence
and in the presence of the reflector, respectively. The sim-
plest estimate of the reflectance

R=
kN2l
kN1l

s11d

is the ratio

R̂conv=
N2

N1
. s12d

SinceN1 andN2 are random, the estimateR̂conv is also ran-
dom, and its statistics determine the measurement error.

To determine the mean and variance, and hence the

signal-to-noise ratio ofR̂conv, it is convenient to think of the
number of countsN1 (or N2) as a sum ofM statistically
independent and identically distributed Bernoulli random
variables representing the photon registrations inM short
time intervals, each of durationT/M [25]. The photon rate is
assumed to be sufficiently small such that the probability of
more than one photoevent in a timeT/M is negligible. We
define p to be the mean number of photons in this time
interval. It follows thatN1 and N2 have binomial distribu-
tions, with meanskN1l=hMp and kN2l=kN1lR, and vari-
ances

varsN1d = kN1lS1 −
kN1l
M

D s13d

and

varsN2d = kN2lS1 −
kN2l
M

D , s14d

respectively. The finite reflectance of the sample and the fi-
nite quantum efficiency of the detector do not change the
binomial statistics ofN1 and N2 [26], since the underlying
Bernoulli distribution is invariant to random deletion[9].

It is not easy to determine the statistics of the ratio given
in Eq. (12). For this purpose, we assume that the deviations
of N1 andN2 from their respective means are small, so that

R̂conv=
kN2l
kN1l

S1 +
N2 − kN2l

kN2l
DS1 +

N1 − kN1l
kN1l

D−1

< RS1 +
N2

kN2l
−

N1

kN1l
D , s15d

where R is the ratio of the means. SinceN1 and N2 are
independent,

varsR̂convd = R2SvarsN2d
kN2l2 +

varsN1d
kN1l2 D . s16d

The SNR is therefore

sSNRconvd =
R2

varsR̂convd
=

MkN2l
fMs1 + Rd − 2kN2lg

. s17d

We now move on to the SNR for the CPB system(see
Fig. 1). The random variablesN1 and N2 are defined in the
same way as in the conventional case, but because of the
common origin of each beam,N1 and N2 are correlated. In
addition, the number of coincidences is a binomial random
variableNc, with mean

kNcl = h2kN1lR s18d

and variance

varsNcd = kNclS1 −
kNcl
M

D . s19d

In this case, we use the ratio

R̂CPB= Nc/N1 s20d

to estimate the producth2R. To determine the mean and

variance ofR̂CPB we approximate Eq.(20) as

R̂CPB=
kNcl
kN1l

S1 +
Nc − kNcl

kNcl
DS1 +

N1 − kN1l
kN1l

D−1

< h2RS1 +
Nc

kNcl
−

N1

kN1l
D , s21d

where we have assumed that the variations ofN1 andNc are
small compared to their respective means. This has permitted
us to convert a ratioNc/N1 to a differenceNc−N1, which is

far more tractable. The mean value ofR̂CPB is h2R. The vari-
ance is given by

varsR̂CPBd = sh2Rd2FvarsNcd
kNcl2 +

varsN1d
kN1l2 − 2

covsNc,N1d
kNclkN1l G ,

s22d

where the variances inN1 andNc are given in Eq.(13) and
Eq. (19), respectively.

The last term in Eq.(22) is a result of the correlated
nature ofNc and N1. By tracing the origins of these two
random variables back to a common Bernoulli random vari-
able that results from the random arrival of a photon pair in
a time slot, and two independent Bernoulli deletion pro-
cesses, it can be shown that

covsNc,N1d = kNclS1 −
kN1l
M

D . s23d

Therefore, we determine the SNR to be

sSNRCPBd =
sh2Rd2

varsR̂CPBd
=

kNclkN1l
kN1l − kNcl

. s24d

We see from Eq.(24) that if we have “perfect” correlation
kNcl equalskN1l and the SNR for the CPB system is infinite.
The finite quantum efficiencies of the detectors employed, as
well as the overall reflectance of the system, serve to reduce
this correlation and therefore the SNR.

Figure 4 shows the SNR for both the conventional and
CPB cases. For the purposes of comparison, we have as-
sumed that the mean number of photons in the intervalT/M,
which must be small, is approximatelyp=0.001 andM,
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which must be large, is chosen to beM =23107. We observe
from Fig. 4(a) that, when the quantum efficiencies of the
detectors are unity, the SNR of the CPB system is higher
than that of the conventional system for all values ofR. We
also see that the enhancement factor is greater for higher
values ofR. As shown in Fig. 4(b), for lower quantum effi-
ciencies, the enhancement factor is reduced below that
shown in Fig. 4(a). We also see that the CPB system does not
perform as well as the conventional system whenR dips
below a certain threshold. The value of this threshold de-
pends on the quantum efficiencies of the detectors. This is
because the coincidence rate is sensitive to the quantum ef-
ficiency of two detectors rather than just a single detector as
in the single beam case, i.e., the coincidence rate decreases
faster than the count rate in the single channel.

Now that we have determined the error in estimating the
reflectance/transmittanceR of the ellipsometric system, we
proceed to determine the corresponding error in estimating
the ellipsometric parametersc andD. For both the conven-
tional and the CPB techniques,R is related to these param-
eters [referring to Eqs.(5) and (6), respectively, withf1
=a2=0] by

Rsc,D,u1,u2d = Cutan ceiD cosu1 cosu2 − sin u1 sin u2u2,

s25d

whereu1 andu2 are the angles of the ellipsometer, andC is
a constant of proportionality appropriate to the CPB or con-
ventional system.

Three measurements ofR at three sets of angles are suf-
ficient to estimate the three unknown parametersc ,D, andC.
A convenient set of angles leads to the three equations

R1 ; Rsc,D,90,90d = C, s26d

R2 ; Rsc,D,0,0d = C tan2 c, s27d

and

R3 ; Rsc,D,45,45d =
C

4
utan ceiD − 1u2, s28d

which may be solved to obtain the following expressions for
c ,D

c = arctanÎR2

R1
s29d

and

D = arccosS4R3 − R1 − R2

2ÎR1R2
D . s30d

Since only statistical estimates of the three reflectances

R̂1, R̂2, andR̂3 are available, the corresponding estimates of
the ellipsometric parameters based on Eq.(29) and Eq.(30)
are

ĉ = arctanÎR̂2

R̂1

s31d

and

D̂ = arccosS4R̂3 − R̂1 − R̂2

2ÎR̂1R̂2

D . s32d

Since the estimatorsR̂1, R̂2, andR̂3 are statistically indepen-
dent, we may use error propagation techniques[27] to write
the variances of the estimated ellipsometric parameters as

varsĉd = S ] c

] R2
D2

varsR̂2d + S ] c

] R1
D2

varsR̂1d s33d

and

varsD̂d = S ] D

] R3
D2

varsR̂3d + S ] D

] R2
D2

varsR̂2d

+ S ] D

] R1
D2

varsR̂1d. s34d

We are now in a position to determine the relative errors in
estimating the ellipsometric parameters for either the CPB or
conventional system by using Eq.(29) and Eq.(30) to deter-
mine the derivatives in Eq.(33) and Eq.(34), and the expres-
sion in Eq. (16) or Eq. (22) to determine the variances of

R̂1,R̂2, andR̂3 for both techniques.

Figure 5 shows the relative error inĉ, ec=varsĉd /c 2, for
both the CPB and conventional systems for two different
quantum efficiencies. We observe from Fig. 5(a) that the er-
ror is larger for the conventional case for all values ofc
when the quantum efficiencies of all detectors used are unity,
with the largest difference being an order of magnitude im-
provement inec for the CPB system over the conventional
system. A similar effect is seen in Fig. 6(a) where the relative

error in D̂, eD=varsD̂d /D2, is compared for the two systems
whenc=45°. Again, the error is larger for the conventional
system for all values ofD when the detector quantum effi-
ciencies are unity. Choosing different values ofc yields
similar curves foreD.

FIG. 4. Comparison of the signal-to-noise ratio, as a function of
the effective intensity reflectanceR, for correlated-photon beams
(solid curves) and the conventional system(dashed curves) for two
values of the quantum efficiency:(a) h=h1=h2=1; (b) h=h1=h2

=0.6.
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We also see from Figs. 5(b) and 6(b) that, for quantum
efficiencies that are appreciably less than unity,ec andeD for
the CPB case approach those of the conventional case. The
reason for this was considered earlier in the context of de-
riving the SNR. Specifically, the coincidence rate, which is
used only in the CPB system, is sensitive to the square of the
quantum efficiency rather than just to the quantum efficiency
of a single detector, as in the conventional system.

V. CONCLUSION

Conventional ellipsometric measurements are limited in
their accuracy because of unavoidable noise fluctuations that
dominate in the low-light regime. Quantum ellipsometry can
mitigate this limitation by using correlated-photon pairs cre-
ated by the SPDC process, in conjunction with a
coincidence-counting detection scheme. It has the added ad-
vantage that it does not require calibration by an external
reference sample.

An experimental demonstration of correlated-photon el-
lipsometry has been carried out for two bulk semiconductor

samples. We obtained experimental values that are in good
agreement with the expected theoretical values. These mea-
surements were obtained without calibration by an external
reference sample.

We presented a model for determining the signal-to-noise
ratio of the measured ellipsometric parameters. We showed
that systems employing correlated-photon beams have a
larger SNR than those using a conventional source when the
quantum efficiencies of the detectors are high.

In our scheme, we have exploited only the property of
photon number correlation and not polarization entangle-
ment. What role does polarization entanglement play in el-
lipsometric measurements? We are currently exploring this
question and will report on this elsewhere.
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