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Degree of entanglement for two qubits
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We demonstrate that any pure bipartite state of two qubits may be decomposed into a superposition of a
maximally entangled state and an orthogonal factorizable one. Although there are many such decompositions,
the weights of the two superposed states are, remarkably, unique. We propose a measure of entanglement based
on this decomposition. We also demonstrate that this measure is connected to three measures of entanglement
previously set forth: maximal violation of Bell’s inequality, concurrence, and two-particle visibility.
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I. INTRODUCTION

Entanglement is the quintessential property of quant
mechanics that sets it apart from any classical phys
theory@1#, and it is essential to quantify it in order to asse
the performance of applications of quantum information p
cessing@2#. An entangled state is a multiparticle state th
cannot be factored into states of the individual particl
Many measures of entanglement proposed in the past
relied on either the Schmidt decomposition@3# or decompo-
sition in a ‘‘magic basis’’@4#. In this paper, we devise
measure of entanglement for pure bipartite states of two
bits. Our definition is based on a decomposition of the s
vector as a superposition of a maximally entangled an
factorizable state vector. We discuss the connection betw
our definition of the degree of entanglement and severa
lated concepts previously discussed in the literature,
demonstrate that these seemingly unconnected concept
actually identical.

II. DEFINITIONS

A bipartite stateuC f&PH5H1^ H2 , is said to be factor-
izable if it can be factored into a product,uC f&5uC1&
^ uC2&, where uC1&PH1 , uC2&PH2 , and H1 and H2 are
the Hilbert spaces of the individual particles. An entang
state is one for which this is not possible. A maximally e
tangled bipartite state uCe& satisfies the conditions
Tr1(uCe&^Ceu)5(1/2)I2 and Tr2(uCe&^Ceu)5(1/2)I1 ,
where Tr1 and Tr2 stand for tracing over the subspacesH1
andH2 , respectively, andI1 andI2 are the identity operator
in H1 andH2 , respectively. This implies that each particl
when considered alone, is in a maximally mixed state,
though the state of the system as a whole is pure.

III. DEGREE OF ENTANGLEMENT

For Hilbert spacesH1 and H2 of dimension two, i.e.,
when each particle is a qubit, the general bipartite state m
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be expanded in the$u0&, u1&% bases ofH1 andH2 in the usual
form

uC&5a1u00&1a2u01&1a3u10&1a4u11&, ~1!

where( j ua j u251. The state may also be written in terms
a Schmidt decomposition@3#,

uC&5k1ux1,y1&1k2ux2 ,y2&, ~2!

where$ux1&,ux2&% and$uy1&,uy2&% are orthonormal bases fo
H1 and H2 , respectively, andk1 and k2 are real and non-
negative coefficients satisfyingk1

21k2
251 andk1>k2 .

We propose adifferent decompositionthat will lead to a
definition for the degree of entanglement:

uC&5puCe&1A12p2eiwuC f&. ~3!

Here,uCe& is a maximally entangled normed state,uC f& is a
factorizable normed state orthogonal touCe& (^CeuC f&
50), andp andw are real numbers.

It is shown in the Appendix that this decompositional-
ways exists and is not unique, but the parameter p is uniq.
This is a quite remarkable result and, to the best of
knowledge, has not been observed before in the literature
entanglement measures.

An entire family of $uCe&,uC f&% pairs exists for each
state, but all have the same value ofp. It remains to demon-
strate how this family may be generated for a given state
is shown in the Appendix that the decomposition in Eq.~3!
may be obtained from the~unique! Schmidt decomposition
given in Eq. ~2! by a local unitary transformation,U5U1
^ U2 , where

U15F a 2beiu

be2 iu a G , U25F b 2ae2 iu

aeiu b G , ~4!

with a and b positive real numbers,a21b251, and u an
arbitrary phase. Applying this unitary transformation to E
~2! with a5Ak1 /(k11k2), b5Ak2 /(k11k2), gives
©2001 The American Physical Society01-1
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uC&5
p

&
~ uu1 ,v1&1uu2 ,v2&)1A12p2eiuuu1 ,v2&, ~5!

which is of the form of Eq.~3!. Reversing the values ofa and
b gives

uC&5
p

&
~ uu1 ,v1&1uu2 ,v2&)1A12p2eiuuu2 ,v1&, ~6!

which, again, is of the form of Eq.~3!. The parametersa and
b are unique, whereasu is a free parameter.

As an example, the state

uC&5
1

)
~ u00&1u01&1u11&) ~7!

may be decomposed in the form of Eq.~3! with uCe&
5(1/&)(u00&1u11&), uC f&5u01&, and p5A2/3. Another
decomposition can make use of the statesuCe&
5(&/10)(3u00&14u01&24u10&13u11&) and uC f&5(1/
5)(2u00&1u01&14u10&12u11&), with the same value ofp
5A2/3. It can be easily demonstrated that usinga

5A(51A5)/10, b5A(52A5)/10, andu50 in U1 andU2
in Eq. ~4! leads to the first decomposition whereas usingu
5p leads to the second.

Now that we have established that a state may be dec
posed into a superposition of maximally entangled and f
torizable parts, it is natural to use the squared weightp2 as a
measure of thedegree of entanglement PE[p2. This mea-
surePE is bounded by 0<PE<1 and is invariant under loca
unitary transformations. It is clear from the Appendix th
the state defined in Eqs.~1! and~2! has a degree of entangle
ment

PE5p252ua1a42a4a3u52k1k2 . ~8!

We may justify usingPE as a measure of the degree
entanglement in another way. Bell’s inequality@5# tests the
nonlocality of quantum mechanics that was challenged
Einstein, Podolsky, and Rosen@6#. The form of Bell’s in-
equality that has principally been put to the test is that du
Clauser, Horne, Shimony, and Holt~CHSH! @7#. Their for-
mulation requires evaluating the following quantity for a b
partite state:

f ~C!5uE~c,d!1E~c8,d!1E~c,d8!2E~c8,d8!u<2,
~9!

wherec andc8 are two observables of the first particle andd
and d8 are two of the second, such that they all have
maximum absolute expected value of one, and E(c,d) is the
expected value of the correlation ofc andd, and so on for the
other expected values. Local physical theories satisfy
inequality whereas quantum mechanics violates it for a ju
cious choice of measurements. It has been shown@8# that the
maximum violation of this inequality is f max(C)
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2. Using Eq.~8!, this relationship can be re
written as f max(C)52A11PE

2, i.e., the maximum violation
of the CHSH form of Bell’s inequality for a pure state
limited by PE .

IV. PREVIOUS MEASURES OF ENTANGLEMENT

A. Wootters’ measure

In Ref. @4#, Wootters presents a measure of the entang
ment of a bipartite state of two qubits that is denoted
concurrence C. The entanglement of formation of the bipa
tite state can always be formulated as a function ofC, which
is defined as follows. First, write the state in the ‘‘magic
basis: ue1&5(1/&)(u00&1u11&), ue2&5( i /&)(u00&2u11&),
ue3&5( i /&)(u01&1u10&), ue4&5(1/&)(u01&2u10&), such
that uC&5( jb j uej&, thenC5u( jb j

2u. It is straightforward to
show thatPE is identical toC, thereby giving meaning to the
concept of concurrence and demonstrating that the m
basis is unnecessary for arriving at this measure of entan
ment @4#.

B. Shimony’s measure

In Ref. @9#, Shimony defines the degree of entangleme
E(C), to be the minimum ‘‘distance’’ between the state a
any factorizable state,E(C)5(1/2)miniuC&2uCf&i2, where
the minimum is taken over the set of factorizable states.
shows, based on the Schmidt decomposition in Eq.~2!, that
E(C)512k1 . This definition suffers from the disadvantag
of scaling from 0 to 0.293, instead of the more satisfyi
range of 0 to 1, and also from the arbitrariness of the pow
two in the ‘‘distance.’’ More germane, perhaps, is the fa
that this is a measure of the distance to the set of factoriz
states in the Hilbert space. Every normalized maximally
tangled state has a projection of length 1/2 onto the se
factorizable states@Eq. ~2! with k15k251/&#. This defini-
tion thus differs conceptually from the definition we propo
in Eq. ~3!, which projects the state simultaneously onto t
set of maximally entangled and factorizable states.

C. Two-particle visibility

Consider a two-particle interferometer@10#. A two-
particle source in an unknown pure state emits one particl
the $ux1&,ux2&% basis and another in the$uy1&,uy2&% basis.
The particles encounter unitary transformationsU1 andU2 ,
which transform the bases to$uu1&,uu2&% and $uv1&,uv2&%,
respectively. Detectors register the singles rates,P1(u1),
P1(u2), P2(v1), P2(v2), and the coincidence rate
P12(u1 ,v1), P12(u1 ,v2), P12(u2 ,v1), P12(u2 ,v2). The aim
is to define a two-particle visibilityV12 that is representative
of the degree of entanglement of the source and that is an
gous, at least in its formal definition, to the visibility of cla
sical interferograms@11#.

Jaegeret al. @12,13# define a ‘‘corrected’’ coincidence
probability, P̄(u1 ,v1)5P12(u1 ,v1)2P1(u1)P2(v1)1A,
whereA is a constant. They define the visibility as the ra
of the difference between the maximum and minimum valu
of P12(u1 ,v1) taken over all differentU1 and U2 , and the
1-2
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sum. However, the definition ofP̄(u1 ,v1), as well as the
choice of the value ofA, is ad hoc.

In the conception presented here, the state at the outp
U1 and U2 is written as uC&5a1uu1,v1&1a2uu1,v2&
1a3uu2,v1&1a4uu2,v2&, so that

P̄~u1 ,v1!5ua1a4u22ua2a3u21A

5~ ua1a4u2ua2a3u!~ ua1a4u1ua2a3u!1A. ~10!

If we choose the phases of the elements ofU1 andU2 such
that sinF50, whereF5u11u21w11w2 ~see Appendix!,
then botha1a4 and a2a3 are real positive quantities an
P̄(u1 ,v1)5A6PE(a1a41a2a3)/2; the quantity6(a1a4
1a2a3)/2 fluctuates as the parameters ofU1 and U2 are
changed. The value ofA should thus be chosen to be equal
the maximum absolute value of this latter quantity, which
1/4 whenua1u5ua4u and ua2u5ua3u. One can show that the
choice ofU1 andU2 that leads to the above condition is th
same one that leads to the results provided in Refs.@12# and
@13#, which were related to interferometric complementa
ties but not to the degree of entanglement. The author
Ref. @13# found thatV1252k1k2 , so that the measuremen
of two-particle visibility is tantamount to a measurement
the degree of entanglementPE .

Note also that the visibilities of the singles rates~the one-
particle visibilities! are all given byA12PE

2, so that in the
context of our present construction, the complementarity
one- and two-particle visibilities@12,13# follows immedi-
ately from the normalization of the state vector.

Another interesting conclusion emerges from the follo
ing considerations. The stateuCe& offers no welcher-weg
~which-way! information about the two particles since ea
particle considered separately is in a maximally mixed st
whereas uC f& provides definitewelcher-weg information
about the two particles. Thus, the complementarity of o
and two-particle visibilities is the two-particle counterpart
the well-known complementarity for a single particle: that
welcher-weginformation and interference visibility. In Ref
@13#, the authors noted the similarity between these t
complementarity relationships. The significance of this sim
larity is now clear.

We conclude that the proposed decomposition of Eq.~3!
provides the underlying foundation for several seemin
different definitions of the degree of entanglement of a p
bipartite state of two qubits.
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APPENDIX: PROPERTIES OF THE DECOMPOSITION

Apply the most general local unitary transformationU
5U1^ U2 to the general bipartite state expressed in
Schmidt decomposition in Eq.~2!:

U15F a1 2a2

a2* a1*
G , U25F b1 2b2

b2* b1*
G , ~A1!

where ua1u21ua2u251 and ub1u21ub2u251; and aj
5uaj ueiu j , bj5ubj ueiw j , j 51,2; such that ux1&→a1uu1&
1a2* uu2&, and so on. After transformation, the state in E
~2! may then be written as

uC&5b1uu1,v1&1b2uu1,v2&1b3uu2,v1&1b4uu2,v2&,
~A2!

where b15k1a1b11k2a2b2 , b25k1a1b2* 2k2a2b1* , b3

5k1a2* b12k2a1* b2 , b45k1a2* b2* 1k2a1* b1* . If we impose
the conditions b350 and b15b4 , we have k2ua1ib2u
5k1ua2ib1u, ua1ib1u5ua2ib2u, u11w15u21w2 . Solving
the first two relationships, we obtainua1u5ub2u
5Ak1 /(k11k2) and ua2u5ub1u5Ak2 /(k11k2); we then
haveb15b45(p/&)e2 i (u11w1) and b25A12p2ei (u12w2),
wherep252k1k2 . Since the Schmidt coefficients are uniqu
for any given state, the parameterp is also unique. We absorb
the phases into the definition ofU1 andU2 given in Eq.~A1!
and thereby finally obtain the result given in Eq.~5!. We can
similarly impose the conditionsb250 and b15b4 in Eq.
~A2! to obtain the result given in Eq.~6!. A similar analysis,
but used for a different purpose, is the starting point of R
@14#.

The parameterp may also be expressed in terms of t
coefficients ofuC& in Eq. ~1!. A maximally entangled state
takes the form uCe&5eig(a1u00&1a2u01&2a2* u10&
1a1* u11&), whereas a factorizable state takes the fo
uC f&5b1u00&1b2u01&1b3u10&1b4u11&, where g is a
phase,ua1u21ua2u251/2, and b1b42b2b350. The coeffi-
cients ofuC& in Eq. ~1! may be written in terms of the coef
ficients of uCe& and uC f&, using Eq. ~3!, as a15peiga1

1A12p2eiwb1 and similarly fora2 , a3 , anda4 . It readily
follows that

a1a42a2a35
1

2
p2ei2g1pA12p2ei ~g1w!~a1b41a1* b1

2a2b31a2* b2!. ~A3!

The expression in parentheses on the right-hand side of
~A3! is precisely the orthogonality condition^CeuC f&50. It
follows that ua1a42a2a3u5(1/2)p2, completing the proof
of Eq. ~8!.
1-3



te

s

.

tt.
,

.

RAPID COMMUNICATIONS

ABOURADDY, SALEH, SERGIENKO, AND TEICH PHYSICAL REVIEW A64 050101~R!
@1# E. Schrödinger, Naturwissenschaften23, 807 ~1935!; 23, 823
~1935!; 23, 844 ~1935!.

@2# A. K. Ekert, Phys. Rev. Lett.67, 661~1991!; C. H. Bennett, G.
Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Woot
ibid. 70, 1895~1993!.

@3# A. Peres,Quantum Theory: Concepts and Methods~Kluwer,
Dordrecht, 1993!.

@4# S. Hill and W. K. Wootters, Phys. Rev. Lett.78, 5022~1997!;
W. K. Wootters, ibid. 80, 2245 ~1998!; W. T. K. Wooters,
e-print quant-ph/0001114.

@5# J. S. Bell, Physics~Long Island City, N.Y.! 1, 195 ~1964!.
@6# A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev.47, 777

~1935!.
@7# J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phy

Rev. Lett.23, 880 ~1969!.
05010
rs,

.

@8# N. Gisin, Phys. Lett. A154, 201 ~1991!; S. Popescu and D
Rohrlich, ibid. 166, 293 ~1992!.

@9# A. Shimony, Ann. N.Y. Acad. Sci.755, 675 ~1995!.
@10# M. A. Horne, A. Shimony, and A. Zeilinger, Phys. Rev. Le

62, 2209~1989!; A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh
A. V. Sergienko, and M. C. Teich, Phys. Rev. A63, 063803
~2001!.

@11# B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C
Teich, Phys. Rev. A62, 043816~2000!.

@12# G. Jaeger, M. A. Horne, and A. Shimony, Phys. Rev. A48,
1023 ~1993!.

@13# G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A51, 54
~1995!.

@14# L. Hardy, Phys. Rev. Lett.71, 1665~1993!.
1-4


