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Degree of entanglement for two qubits
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We demonstrate that any pure bipartite state of two qubits may be decomposed into a superposition of a
maximally entangled state and an orthogonal factorizable one. Although there are many such decompositions,
the weights of the two superposed states are, remarkably, unique. We propose a measure of entanglement based
on this decomposition. We also demonstrate that this measure is connected to three measures of entanglement
previously set forth: maximal violation of Bell's inequality, concurrence, and two-particle visibility.
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l. INTRODUCTION be expanded in thf0), |1)} bases oH, andH, in the usual
form
Entanglement is the quintessential property of quantum
mechanics that sets it apart from any classical physical
theory[1], and it is essential to quantify it in order to assess
the performance of applications of quantum information pro-
cessing[2]. An entangled state is a multiparticle state thatwhere=;|«j|?=1. The state may also be written in terms of
cannot be factored into states of the individual particles@ Schmidt decompositiof8],
Many measures of entanglement proposed in the past have
relied on either the Schmidt decompositi@] or decompo-
sition in a “magic basis"[4]. In this paper, we devise a
measure of entanglement for pure bipartite states of two qu-
bits. Our definition is based on a decomposition of the statdvhere{|x:).[xz)} and{|ys).|y2)} are orthonormal bases for
vector as a superposition of a maximally entangled and &'1 @andHz, respectively, ande, andz Kz are real and non-
factorizable state vector. We discuss the connection betwedifgative coefficients satisfying; + k=1 andx;=x;.
our definition of the degree of entanglement and several re- We propose alifferent decompositiothat will lead to a
lated concepts previously discussed in the literature, anélé€finition for the degree of entanglement:
demonstrate that these seemingly unconnected concepts are

| W) = a1 00) + arp|01) + 3| 10) + a4 11), (1)

| W) = k1|X1,Y1) + K2l X2,Y2), (2

actually identical. i
Y W)= p|We)+ V1= pZe ¥ W), 3
II. DEFINITIONS Here,| V) is a maximally entangled normed stajt#,;) is a

o S factorizable normed state orthogonal {¥.) ((W¢ Wy)
A blpartlte Statd‘I’f> eH= H1® H2, is said to be factor- :0)' andp andgo are real numbers.

izable if it can be factored into a produdt¥)=|V,) It is shown in the Appendix that this decompositiah
®|W,), where| W) eH;, |¥;)eH,, andH; andH, are  ways exists and is not unique, but the parameter p is unique
the Hilbert spaces of the individual partiCleS. An entangled‘rhis is a quite remarkable result and, to the best of our
state is one for which this is not possible. A maximally en-knowledge, has not been observed before in the literature on
tangled blpartlte State|qfe> satisfies the conditions entang|ement measures.
Tr([We(We[)=(1/2)l;  and  Th(|We)(Wel)=(1/2)l4, An entire family of {|W¥,),|W;)} pairs exists for each
where Tg and Tp stand for tracing over the subspadés  state, but all have the same valuepofit remains to demon-
andH,, respectively, andl; andl, are the identity operators strate how this family may be generated for a given state. It
in Hy andH,, respectively. This implies that each particle, is shown in the Appendix that the decomposition in E).
when considered alone, is in a maximally mixed state, almay be obtained from th@unique Schmidt decomposition

though the state of the system as a whole is pure. given in Eq.(2) by a local unitary transformatior)=U,
®U,, where
Il. DEGREE OF ENTANGLEMENT _ _
. . . . a —bé’ b —ae'’
For Hilbert spaceH; and H, of dimension two, i.e., Ui=|, _is . U=, A
when each particle is a qubit, the general bipartite state may be a ae b

with a and b positive real numbersa®+b?=1, and ¢ an
*Electronic address: besaleh@bu.edu arbitrary phase. Applying this unitary transformation to Eq.
TURL: http://Awww.bu.edu/qil (2) with a= \ky/(k1+ K2), b= K2/ (k1+ Kk2), gives
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p _ :2\/1+4K21K22. Using Eq.(8), this relationship can be re-
W)= 5(|ulvvl>+|u2102>)+\/l_p €%uy,v0), (5)  written asf . (¥)=2y1+PZ, i.e., the maximum violation
of the CHSH form of Bell's inequality for a pure state is

which is of the form of Eq(3). Reversing the values afand  limited by Pe.

b gives
IV. PREVIOUS MEASURES OF ENTANGLEMENT

p . A. Wootters’ measure
VY= —(lug,v)+|up,05)) +V1—p?eu,,v,), (6)
A V2 U3 02) + {2 02) pefluz vy In Ref.[4], Wootters presents a measure of the entangle-

ment of a bipartite state of two qubits that is denoted the
which, again, is of the form of Ed3). The parameteraand  concurrence CThe entanglement of formation of the bipar-
b are unique, whereagis a free parameter. tite state can always be formulated as a functio@ofvhich
As an example, the state is defined as follows. First, write the state in the “magic”
basis: |e;) = (1#/2)(|00)+]11)), |e,)=(i/v2)(|00)—|11)),
1 le5)=(i/V2)(|0)+]10)), |e,)=(1A2)(|0)~|10)), such
| W)= —(]00)+|01)+|11)) (7 that|¥)=3,B|e;), thenC= |2jﬂj2|. It is straightforward to
V3 show thatPg is identical toC, thereby giving meaning to the
concept of concurrence and demonstrating that the magic

may be decomposed in the form of E(®) with [Ve) basis is unnecessary for arriving at this measure of entangle-
=(1n2)(]00)+|12)), |¥¢)=|01), and p=2/3. Another ment[4].

decomposition can make use of the stat¢¥.)
=(v2/10)(3/00) + 4|01)— 4|10)+3|11)) and |¥)=(1/
5)(2/00)+|01) +4|10)+2|11)), with the same value op _ _
=\2/3. It can be easily demonstrated that usiag In Ref.[9], Shimony defines the degree of entanglement,

- (5 10,5 {5 (5)10, andu-0 nuy ana,  ECY). 0 be the T dsance:heween e st nd
in Eq. (4) leads to the first decomposition whereas usfhg y tl

- the minimum is taken over the set of factorizable states. He
= leads to the second. hows, based on the Schmidt decomposition in (2j.that
Now that we have established that a state may be deco ' b )

. - . (V) =1- «,. This definition suffers from the disadvantage

osed into a superposition of maximally entangled and fac- ( . 1 . .

Forizable parts i?isr;latural 1o use the sé/uaredv% iBhas a of scaling from 0 to 0.293, instead of the more satisfying

measure of th,e_degree of entanglement.&p2. This mea range of O to 1, and also from the arbitrariness of the power
E . 3

) g . two in the “distance.” More germane, perhaps, is the fact
S“TePE is bounded _by & PE§1 and is invariant under _Iocal that this is a measure of the distance to the set of factorizable
unitary transformations. It is clear from the Appendix that

. . states in the Hilbert space. Every normalized maximally en-
tmhgnsttate defined in Eqil) and(2) has a degree of entangle- tangled state has a projection of length 1/2 onto the set of
factorizable statefEq. (2) with k,= k,=1W2]. This defini-
tion thus differs conceptually from the definition we propose
Pe=p*=2|aa,~ agas| =2k k,. (8) in Eq. (3), which projects the state simultaneously onto the

o ] set of maximally entangled and factorizable states.
We may justify usingPg as a measure of the degree of

entanglement in another way. Bell's inequaljy] tests the
nonlocality of quantum mechanics that was challenged by
Einstein, Podolsky, and Rosd6]. The form of Bell's in- Consider a two-particle interferometdd0]. A two-
equality that has principally been put to the test is that due t@article source in an unknown pure state emits one particle in
Clauser, Horne, Shimony, and HAlEHSH) [7]. Their for-  the {[x1),[x,)} basis and another in thgly,),|y,)} basis.
mulation requires evaluating the following quantity for a bi- The particles encounter unitary transformatidhsand Uy,

B. Shimony’s measure

C. Two-particle visibility

partite state: which transform the bases tu,),|u,)} and {|v4),|v,)},
respectively. Detectors register the singles rateg,u,),
F(W)=|E(c,d)+E(c’,d)+E(c,d")— E(c’,d")| <2, Pi(us), Ps(vy), Pa(vy), and the coincidence rates

(9) P1x(uy,01), P1Us,02), P1p(Uz,v1), P1p(Uz,v5). The aim
is to define a two-particle visibilit}/,, that is representative

wherec andc’ are two observables of the first particle ahd ©Of the degree of entanglement of the source and that is analo-
and d’ are two of the second, such that they all have adous, at least in its formal definition, to the visibility of clas-
maximum absolute expected value of one, and,&) is the ~ Sical interferogram$l1l]. o
expected value of the correlation©oandd, and so on for the Jaegeret al. [12,13 define a “corrected” coincidence
other expected values. Local physical theories satisfy thiprobability,  P(uq,v1) =P (uq,v1) —P1(uq)Py(vq) +A,
inequality whereas quantum mechanics violates it for a judiwhereA is a constant. They define the visibility as the ratio
cious choice of measurements. It has been sH@pthat the  of the difference between the maximum and minimum values
maximum violation of this inequality is (V) of P4»(uy,v4) taken over all differentJ; and U,, and the
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sum. However, the definition oP(uy,v;), as well as the ~ APPENDIX: PROPERTIES OF THE DECOMPOSITION

choice of the value oA, is ad hoc

In the conception presented here, the state at the output of
U, and U, is written as |¥)=a;|uy,vq)+ asluq,vs)
+ a3|U2,U1>+ a4|U2,U2>, SO that

Apply the most general local unitary transformatith
U,®U, to the general bipartite state expressed in the
Schmidt decomposition in Ed?2):

a; —ap

P(uy,v1)=|ara,)?—|azas|>+A U= , (A1)

b, —b,
SR (PR

a; aj
= (|ayas| —[azas|)(|aas] +|azas]) + A, (10)

where |a;|?+]ay/?=1 and [by|?+|by*=1; and a
=|ajle'%, b;=|bj|le'¥, j=1,2; such that|x;)—as|u;)
+a%|uy), and so on. After transformation, the state in Eq.
(2) may then be written as

If we choose the phases of the elementdJgfand U, such
that sin®@=0, where® = 0, + 6,+ @1+ ¢, (see Appendix
then bothaq,a, and a,a; are real positive quantities and
P(uy,vq) =AxPe(ajast aras)/2; the quantity = (aiay
+asa3)/2 fluctuates as the parameters Wf and U, are
changed. The value & should thus be chosen to be equal to | W)= Balus,v1)+ Bafus,va) + Baluz,v1) + Baluz,va),
the maximum absolute value of this latter quantity, which is (A2)
1/4 when| a,|=|a,| and|a,|=|as|. One can show that the . .
choice ofU; andU, that leads to the above condition is the WNere B1=k1810;+ koa5by, Bo=x18107 —kp8:01 , B3
same one that leads to the results provided in Ré®.and = K183 b1 — ka7 by, B4= K183 b3 + kpa7 by . If we impose
[13], which were related to interferometric complementari-the conditions 3;=0 and B;=p,4, we have «;|a,|/b,|
ties but not to the degree of entanglement. The authors iff K1/@zl[bsl, |ail[bs|=|a,llb,|, 6;+¢1=6,+¢,. Solving
Ref. [13] found thatV,,=2x,x», SO that the measurement the first two relationships, we obtain|a|=|b,|
of two-particle visibility is tantamount to a measurement of = k1 /(k1+ k) and |ay|=|bs|= Vk,/(k1+ k,); we then
the degree of entanglemeRt. . have 8,=B,=(p/v2)e '(?1+¢1) and B,= J1— p2e'(f1~¢2),
Note also that the visibilities of the singles ratdse one- wherep?=2«,«,. Since the Schmidt coefficients are unique
particle visibilitieg are all given byy1—PZ, so that in the for any given state, the paramefeis also unique. We absorb
context of our present construction, the complementarity othe phases into the definition bf, andU, given in Eq.(A1)
one- and two-particle visibilitie§12,13 follows immedi-  and thereby finally obtain the result given in E6). We can
ately from the normalization of the state vector. similarly impose the conditiong,=0 and 8,= 4, in Eq.
Another interesting conclusion emerges from the follow-(A2) to obtain the result given in Eg6). A similar analysis,
ing considerations. The statel,) offers no welcher-weg but used for a different purpose, is the starting point of Ref.
(which-way) information about the two particles since each[14].
particle considered separately is in a maximally mixed state, The parametep may also be expressed in terms of the
whereas|¥;) provides definitewelcher-weginformation  coefficients of|¥) in Eq. (1). A maximally entangled state
about the two particles. Thus, the complementarity of onetakes the form |¥.)=e'?(a;/00)+a,|01)—a3|10)
and two-particle visibilities is the two-particle counterpart of +aj|11)), whereas a factorizable state takes the form
the well-known complementarity for a single particle: that of | ;) =b;|00) + b,|01) + b3/ 10) + b,|11), where y is a
welcher-weginformation and interference visibility. In Ref. phase,|a;|?+ |a,|2=1/2, andb;b,—b,b;=0. The coeffi-
[13], the authors noted the similarity between these twacients of|¥) in Eq. (1) may be written in terms of the coef-
complementarity relationships. The significance of this simificients of |¥,) and |¥;), using Eq.(3), as a;=pe’a;
larity is now clear. +1—p?e'*b; and similarly fora,, a3, anday. It readily
We conclude that the proposed decomposition of BY. follows that
provides the underlying foundation for several seemingly
different definitions of the degree of entanglement of a pure
bipartite state of two qubits. @ia,— a2a3=%p2ei27+ p\/l_—pzei(7+ <p)(a1b4+a16 b,
ACKNOWLEDGMENTS —ayhg+ a; b,). (A3)
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