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We report the first experimental demonstration of even-order aberration cancellation in quantum
interferometry. The effect is a spatial counterpart of the spectral group velocity dispersion cancellation,
which is associated with spectral entanglement. It is manifested in temporal interferometry by virtue of the
multiparameter spatial-spectral entanglement. Spatially entangled photons, generated by spontaneous
parametric down-conversion, were subjected to spatial aberrations introduced by a deformable mirror that
modulates the wave front. We show that only odd-order spatial aberrations affect the quality of quantum

interference.
DOI: 10.1103/PhysRevLett.101.233603

The nonlinear optical effect of spontaneous parametric
down-conversion (SPDC) has been a reliable source of
entangled-photon states for the last 30 years. A photon of
the pump radiation has a random chance to be converted
into two photons with lower energy while traveling though
the nonlinear material. Conservation of energy and mo-
mentum governs the spatial and spectral state of the down
converted light. In the case of a monochromatic pump
beam, energy conservation leads to strong anticorrelation
between the frequency components of signal and idler
wave packets. This symmetric superposition of all possible
anticorrelated frequencies with respect to the degenerate
frequency of signal and idler waves gives rise to frequency
entanglement.

Even-order dispersion cancellation is among the most
interesting consequences of frequency entanglement [1,2].
If one of the two photons of an entangled pair travels
through a dispersive material and both photons are com-
bined on a beam splitter in a Hong-Ou-Mandel configura-
tion [3], then the rate of coincidences between the counts of
two single-photon detectors placed at the output ports
depends on the odd-order dispersion terms only when
observed as a function of the path difference between the
two arms before the beam splitter. The detrimental effect of
even-order dispersion (such as group velocity dispersion),
which leads to the wave packet broadening, is canceled.
This has been exploited in several applications such as the
measurement of photon traveling time trough a material
[4], and improving the accuracy of remote clock synchro-
nization [5]. Optical coherence tomography [6,7] has also
benefited from this nonclassical effect. This quantum effect
has inspired recent developments of classical nonlinear
optical systems mimicking dispersion cancellation [8,9].

The wave vector of a monochromatic wave at a given
frequency () has a bidimensional transverse wave vector ¢

(in the plane orthogonal to the propagation direction) and a

longitudinal component k(q, Q) =+/[n*(Q)Q?/c*]—|q|>.
In parametric down-conversion with a plane-wave pump,
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momentum conservation leads to anticorrelation of the
transverse wave vector components [10]. This analogy
with frequency anticorrelation [11] suggests the existence
of a spatial counterpart to dispersion cancellation. How-
ever, no experimental observation of a spatial dispersion-
cancellation effect has been reported so far.

The longitudinal component of the wave vector, on the
other hand, sets up the phase-matching relation that estab-
lishes conditions for an effective energy conversion be-
tween three interacting waves, pump, signal, and idler.
Since the longitudinal wave vector depends both on fre-
quency and on transverse momentum, this condition sets a
specific relation between the frequency and the emission
angle of down-converted radiation. In other words, the
frequency and transverse momentum degrees of freedom
cannot be factorized and the overall quantum state is con-
currently entangled in both w and q (multiparameter en-
tanglement). This leads to several interesting effects where
the manipulation of a spatial variable affects the shape of
the temporal interference pattern and also polarization
interference pattern [12] .

In this Letter, we exploit the multiparameter en-
tangled states generated by SPDC to demonstrate the
effect of even-order spatial aberration cancellation. We
use an SPDC source to produce momentum-anticorrelated
photons and we modulate their wave fronts by a transfer
function H(q). Because of the correlations between q and
w, the manipulation in the q space will introduce
changes in the w space. Therefore the spatial wave front
modulation will affect the temporal interference pat-
tern, which can be observed using a polarization two-
photon interferometer [12,13]. With this technique we
show that, due to the anticorrelation of the transverse
momenta, the even-order aberrations are canceled out,
and only the odd-order contributions influence the
resulting interference pattern. We believe this effect may
lead to interesting applications in the field of quantum
imaging.
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The setup of our experiment is sketched in Fig. 1. A laser
diode with a single longitudinal-mode selection (405 nm,
35 mW) pumps a 1.5-mm thick BBO (BaB,0,) crystal that
is cut for a collinear degenerate type-II phase matching.
Approximating the pump beam with a plane wave, the two
orthogonally polarized photons emitted by the crystal can
be described by the quantum state [10]:

|¢>=/ﬁqfdwﬂ%wMMqﬂo+w)
X al(—q, Qy — w)|0), (1)

where
LA .
é(q, ) = Sincl:#]el(LA(q,w)/z)' 2

The phase-mismatch function A(q, ) in the paraxial
approximation takes the form

_ < 2|q/?
Alq, w) = —wD + Mé, - q + . 3)

P

where D is the difference between the inverse of the group
velocities of the ordinary and the extraordinary waves

inside the birefringent crystal and M is their spatial walk-

2
off in the vertical direction €,. The term 2',%' is due to

P
diffraction during the propagation of photons through the
crystal. In case of a BBO crystal, phase-matched for a
degenerate (Ao = 810 nm) collinear type-II down-
conversion, D = 182 ps/mm and M = 0.0723.
A polarizing beam splitter (PBS) separates the horizon-
tally polarized photon and the vertically polarized one into

FIG. 1 (color online). Schematic of the experimental setup.
Examples of aberrations induced by the deformable mirror are
illustrated in the inset: the even-parity aberrations on the left are
canceled, while the odd-parity ones on the right alter the shape of
the interference pattern.

two distinct paths, one towards a flat mirror (FM) and the
other towards a deformable mirror (DM). Each photon
passes through a 4-f system comprising a lens (L.1) of
focal length f = 200 mm positioned at a distance f from
the output plane of the crystal, and the same distance f
from the mirror. On the way from the crystal to the mirror,
the lens maps each wave vector component to a different
point x(q, w) on the mirror surface. The limited down-
conversion bandwidth (about 30 nm for a collection angle
of 25 mrad) allows us to neglect the frequency dependence
of the 4-f system; assuming that the lens is achromatic:

f o _f

x(q, ) A 4)
The deformation of the mirror surface at point x can be
described by the function {(x). A photon focused to the
point x by the lens will travel a distance {(x) to the mirror
surface, will be reflected and will travel a distance /(x)
back to the lens focal plane. Therefore it will acquire a
phase shift:

@(x) = 2k,{(x). (&)

After reflection from the mirror, the same lens maps every
point back to a wave vector. Mathematically, the trans-
formation induced by the 4-f system can be described by
the transfer function:

H(q) = p(% q)eicv[(f/ko)q], (6)

where the pupil function p(x) describes the circular aper-
ture of the mirror.

The deformable mirror [14] consists of a thin nitrocel-
lulose silver-coated membrane (12 mm diameter, 5 um
thick, initial flatness less than 20 nm rms) that is deformed
by electrostatic forces created when a voltage drop (maxi-
mum 270 V) is applied to 37 electrodes. The action pro-
duced by each actuator was mapped by measuring the
induced deformation with a Zygo interferometer, creating
an influence function matrix.

In addition, each photon, traveling from the PBS to the
mirror and back passes twice through a quarter-wave-plate
oriented at 45° and flips its polarization state. This way the
photon that has been transmitted is now reflected at the
polarizing beam splitter (PBS) and vice versa, resulting in
both photons leaving the modulation section together to-
wards the polarization interferometer.

The polarization interferometer [13,15] consists of a
birefringent delay line (DL, made of two sliding quartz
wedges) providing a variable delay 7 and a nonpolarizing
beam splitter (BS) that splits the photons in two paths
directed to two single-photon detectors D; and D,. A
polarizer oriented at 45° is placed in front of each detector
in order to erase information about the polarization of the
incoming photon. Photons were collected by a lens in each
arm and focused onto the detector’s active area. To max-
imize the spatial collection capability we used two open-
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face (180 um diameter) single-photon silicon avalanche
photodiodes. Using a fiber coupler would limit the number
of collected spatial modes. All experiments have been
performed with an 8-mm diameter pinhole placed at
330 mm from the output plane of the 4-f system, therefore
collecting photons from an angle of about 25 mrad. A
dichroic mirror and a pair of interference bandpass filters
with a bandwidth that is greater than that of down-
conversion have been used to reject the residual pump
radiation and the background light. The number of coinci-
dences acquired as a function of optical polarization delay
7 shows a high-visibility quantum interference pattern in
the form of a dip [12].

Since the photon-counting detectors are slow, compared
with the coherence time of down-converted photons, and
since their surface is larger than the spot size, the expres-
sion for the coincidence rate, in the paraxial approxima-
tion, is [16]

re(r = R 1= A(1- 2w ] @)

where R, is the background coincidence rate, A(a) is a
triangular function [A(a) =1 —|a| if |a| <1, and
A(a) = 0, otherwise], and

W, (7) = [ dqdq /R e =14 P1p g

2T
+ 2 - + ! —_
q]51nc[MLez (q Q)A(l DL)]
(b (La)e e, )

The function A(1 — %) represents a usual triangular dip
one obtains in type-II quantum interferometry when work-
ing in the single spatial-mode approximation (using narrow
pinholes). The function Wy, (7) takes into account the
deformation of the triangular dip induced by the modula-
tion of the transverse wave vectors and the Fourier trans-
form of the shape of the detection apertures P,[q]. In
particular, the function Wy, (7) describes how manipulation
in the q space by a filter H(q) is converted into a modifi-
cation of the temporal interference pattern, by means of the
coupling between wave vectors and frequencies set by the
phase-matching conditions.

If the detection apertures are sufficiently large, the func-
tion P,[q+q'] can be well approximated by a
delta function, so that Eq. (8) can be simplified to

W= () f dq H*(i q> H<_ I q) ¢i2Mko/fD)réra
ko ko
()]

If the function H(q) has a circular symmetry, its phase
¢(q) = arg{H(q)} can be expanded using a set of Zernike
polynomials, which are orthogonal on the unit circle [17],

e(@ =D D @Ry (p) cos(mb), (10)

n m

where q = (pcosf, psind) and m = —n, —n + 2, —n +
4,...,n. Using the fact that —q =[pcos(d + ),
p sin(@ + 77)], and that if m is even, then cos[m(0 + m)] =
cos(m@), while if m is odd, then cos[m(6 + )] =
— cos(m#), one gets

@~ e(=q) =2> > ¢,,Ri(p)cos(mb). (11)

n - m odd

This means that only Zernike polynomials with m odd
(and consequently 7 odd) will contribute to the shape of the
interference pattern. For example, contributions from as-
tigmatism (n = 2, m = £2), defocus (n = 2, m = 0), and
spherical aberration (n = 4, m = 0) will all be canceled.
On the contrary, coma (n = 3, m = *=1) and trefoil (n =
3, m = *3) will be present.

We studied different types of aberrations: coma along
the x axis (n = 3, m = +1), coma along the y axis (n = 3,
m = —1), astigmatism (n = 2, m = 2), and the aberration
corresponding to n = 4 and m = 4. The experimental data
for coma oriented along the x and y (parallel to the vertical-
polarization) directions are presented in Fig. 2. Because of
the multiparameter entanglement of the two-photon state,
the wave front distortion induced by the deformable mirror
modulates the spectral degree of freedom, resulting in a
modification of the temporal interference pattern. We in-
creased the maximum amplitude of the mirror deformation
from 0.2 pum (~0.25Xy) to 0.75 pwm (~Ag) (peak-to valley
deformation) for coma along x and from 0.2 um to
0.4 pm (~0.5Aq) for coma along y axis. The shape of
the interference pattern is changed dramatically when the
intensity of the coma aberration increases. Theoretical
predictions (solid lines) based on the experimental parame-
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FIG. 2 (color online). Coincidence-rate interference patterns
when coma (n = 3, m = *1) along the x axis (on the left) and
along the y axis (on the right) is imposed on the deformable
mirror. Solid lines illustrate theoretical fitting with experimental
parameters. The initial relative tilt between the deformable
mirror (DM) and the flat mirror (FM) is used as an adjustable
parameter to account for the imperfectness of experimental
alignment between two arms. The shapes of adaptive mirror
deformation producing selected aberrations are illustrated in the
nsets.
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FIG. 3 (color online). Interference patterns in the coincidence
rate when astigmatism at 45° (left picture) and the aberration
described by n =4, m =4 are dialed on the mirror. The
intensity of the aberrations has been scanned from 0.2 to
0.8 um peak-to-valley deformation. The interference pattern is
insensitive to the aberrations within experimental errors.

ters are superposed to experimental data in Fig. 2: the
matching between the two curves is pretty good.

Experimentally obtained data for astigmatism (with
symmetry axes oriented at 45° with respect to the
x-y axes) and for the aberration identified by n = 4 and
m = 4 are shown in Fig. 3. The effect of these even-order
aberrations is effectively canceled out due to the spatial
correlations between the photons in parametric down-
conversion. Therefore, such type of spatial aberrations do
not affect the shape of the dip so that the known quantum
interference pattern is retained.

This effect has a clear analogy with even-order fre-
quency dispersion cancellation due to frequency entangle-
ment in SPDC. In case of spectral dispersion, the use of a
nonmonochromatic pump reduces the degree of correlation
between spectral components of entangled photons and
degrades the dispersion cancellation effect. In our case of
even-order aberration cancellation, sharp spatial correla-
tions can be obtained only in the approximation of a plane-
wave pump beam. Therefore, wave vector correlations get
weaker for focused pump beams and the aberration can-
cellation effect also degrades when the pump beam is
focused tightly on the crystal. Furthermore, the spectral
dispersion cancellation effect works in the limit of slow
detectors because it requires integration over the temporal
degree of freedom. Similarly, the even-order aberration
cancellation works well only in the situation when the
collection apertures used in experiment are sufficiently
large to enable effective integration over the spatial degrees
of freedom [16].

The question remains whether the effect we have re-
ported is purely quantum, or some classical counterpart can
be envisioned, as in the case of spectral dispersion cancel-
lation. We believe that a classical optical configuration
mimicking even-order aberration cancellation could poten-

tially be discovered by exploiting a light source with strong
degree of spatial intensity correlation similar to optical
speckles.

In conclusion, we have demonstrated experimentally the
effect of cancelling even-order spatial aberration in quan-
tum interferometry using entangled-photon states gener-
ated in a type-II spontaneous parametric down-conversion
process. This effect may prove helpful in enhancing the
spatial resolution in quantum imaging.

This work was supported by a U.S. Army Research
Office (ARO) Multidisciplinary University Research
Initiative (MURI) Grant; by the Bernard M. Gordon
Center for Subsurface Sensing and Imaging Systems
(CenSSIS), an NSF Engineering Research Center; by the
Intelligence Advanced Research Projects Activity
(IARPA), ARO through Grant No. W911NF-07-1-0629
and DEI-UniPD QUINTET project. C.B. also acknowl-
edges financial support from Fondazione CARIPARO.

[1] J.D. Franson, Phys. Rev. A 45, 3126 (1992).

[2] A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, Phys.
Rev. A 45, 6659 (1992).

[3] C.K.Hong, Z.Y. Ou, and L. Mandel, Phys. Rev. Lett. 59,
2044 (1987).

[4] A.M. Steinberg, P. G. Kwiat, and R.Y. Chiao, Phys. Rev.
Lett. 68, 2421 (1992).

[5] V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong,
Phys. Rev. Lett. 87, 117902 (2001).

[6] A.F. Abouraddy, M.B. Nasr, B.E.A. Saleh, A.V.
Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817
(2002).

[7] M.B. Nasr, B.E. A. Saleh, A.V. Sergienko, and M.C.
Teich, Phys. Rev. Lett. 91, 083601 (2003).

[8] K.J. Resch, P. Puvanathasan, J.S. Lunden, M.W.
Mitchell, and K. Bizheva, Opt. Express 15, 8797 (2007).

[9] B.I. Erkmen and J. H. Shapiro, Phys. Rev. A 74, 041601
(R) (20006).

[10] M.H. Rubin, Phys. Rev. A 54, 5349 (1996).

[11] B.E.A. Saleh, A.F. Abouraddy, A.V. Sergienko, and
M. C. Teich, Phys. Rev. A 62, 043816 (2000).

[12] M. Atature, G. DiGiuseppe, M. D. Shaw, A. V. Sergienko,
B.E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 023822
(2002).

[13] Y.H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and
C.O. Alley, Phys. Rev. A 50, 23 (1994).

[14] S. Bonora, I. Capraro, L. Poletto, M. Romanin,
C. Trestino, and P. Villoresi, Rev. Sci. Instrum. 77,
093102 (2006).

[15] M.H. Rubin, D.N. Klyshko, Y.H. Shih, and A.V.
Sergienko, Phys. Rev. A 50, 5122 (1994).

[16] C. Bonato, A.V. Sergienko, and P. Villoresi,
arXiv:0810.0932.

[17] M. Born and E. Wolf, Principles of Optics (Cambridge
University Press, Cambridge, U.K., 1999).

233603-4



