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The method of correlated orbital angular momentum (OAM) spectroscopy is shown to be capable
of image reconstruction for complex, off-axis objects, with information extraction rates exceeding
one bit per photon. Computer simulations of OAM-correlated beams are combined with digitized
representations of opaque objects in order to study various effects of the object on the joint OAM
coincidence spectrum. It is shown through simulations of OAM-correlated beams that complex im-
age identification and even reconstruction is possible without any measurement in position space.
In addition to demonstrating the novel image reconstruction capabilities of this correlation method,
the unique off-diagonal spectral signatures, as well as the mutual information rates associated to
each object studied, are presented. In particular, changes in these properties due to off-axis trans-
lation in the beam field are considered; it is shown that spectral signatures and information rates
are independent of environmental factors sufficiently far from the beam center. The results sug-
gest further application in small-scale biological contexts where symmetry and small numbers of
noninvasive measurements are important.

I. INTRODUCTION

Recently, a new method of correlated optical sensing
was introduced [1], in which correlations between the
orbital angular momentum (OAM) states [2–4] of two
beams or photons is measured through coincidence count-
ing and singles rates. (See [5–17] for related, non OAM-
based methods such as ghost imaging and compressive
ghost imaging.) Aside from predicting image reconstruc-
tion capabilities, the method explored in [1] suggested
that objects leave an imprint in the off-diagonal com-
ponents of the joint OAM coincidence spectrum, where
the diagonal represents the well-known conservation of
OAM [18]. This aspect of theory was confirmed exper-
imentally in [19]. In these experiments it was observed
that the joint OAM spectrum of an object signifies sim-
ple rotational symmetries of the object in a predictable
way, namely that only the off-diagonal components of
the spectrum for which lo + lr = N are nonzero when
the object transmission profile has an N -fold rotational
symmetry, where lo and lr represent the OAM content
of the object and reference beam, respectively. The the-
ory introduced in [1] also suggests a potential imaging
scheme based on correlated OAM states, which we will
hereafter refer to as correlated spiral imaging (CSI) in
reference to digital spiral imaging [22–24], an interesting
related non-imaging spectroscopic method.

Here, we simulate the performance of CSI using sub-
stantially more complicated objects than have been pre-
viously considered, paying special attention to the infor-
mation capacity of the method. By ”more complicated”
we mean objects with complex geometries, a great deal
of angular variation, and at off-center positions in the
beam field. We use digitized representations of opaque
objects to directly compute the necessary amplitudes in

order to study the effects – on spectral signature, im-
age reconstruction accuracy, and mutual information –
of linearly translating objects off-axis with respect to the
beam’s center.

After reviewing the relevant theoretical concepts and
discussing their relation to the CSI measurement appa-
ratus in Sec. II B, we present a number of simulations in
Sec. III. We show not only that the method successfully
images asymmetric off-axis objects, but that the mutual
information contained in the off-diagonal elements of the
joint OAM spectrum remains above the one bit per pho-
ton limit for objects near the beam center, and grows
with the size of the object’s symmetry group.

II. BACKGROUND

A. Theory

All beams considered will be decomposed into
Laguerre-Gauss (LG) modes |l, p〉, each mode with OAM
l~ and p radial nodes where l and p are integers [20, 21].
In cylindrical coordinates (r, z, φ), the position space rep-
resentation of |l, p〉 in the object plane is given by [26]

〈r, φ|l, p〉 = k|l|p r
|l|e−r

2/w2
0L|l|p (2r2/w2

0)eiφl, (1)

where k
|l|
p is a normalization constant, Lαn(x) is the gen-

eralized Laguerre polynomial of order n, and w0 is the
beam waist [4].

Before discussing the measurement apparatus, it will
be useful to develop a sense of how objects may be repre-
sented in terms of their effect on OAM states. By consid-
ering this representation now, the role of correlation will
become more clear later. We use outer products of OAM
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FIG. 1: A setup allowing object image reconstruction via
transition amplitude phase-sensitive measurement of corre-
lated OAM content.

states to form an overcomplete basis which can be used
to express an object’s transmission function, T (r, φ), as
an operator expanded in terms of OAM transitions as

follows. For some al
′
l

p′p
∈ C

T̂ =
∑

l,l′ ,p,p′

al
′
l

p′p
|l

′
, p

′
〉〈l, p|. (2)

To better understand the coefficients al
′
l

p′p
, we invert

Eq. (2) and find that

al
′
l

p′p
=

∫
drdφ[ul′p′ (r, φ)]∗T (r, φ)ulp(r, φ)

= 〈l
′
, p

′
|T̂ |l, p〉. (3)

Eq. (3) shows that the al
′
l

p′p
are in fact amplitudes for a

given state |l, p〉 to transition to the state |l′ , p′〉. Since
the LG state vectors are a priori known basis elements,
successful reconstruction of an image depends only on

the determination of the al
′
l

p′p
, as indicated by Eq. (2).

We note here a clear analogy with Fourier decomposi-
tion, with the exception that our basis functions form an
overcomplete basis.

B. Apparatus

We will now explain how the transition amplitudes,

al
′
l

p′p
of Eq. (3), may be recovered using the correlation

setup shown in Fig. 1. As a source of photon pairs
which are correlated in OAM, consider a Gaussian pump,
|lp, p0〉 = |0, p0〉, producing object and reference beams,
|l1, p1〉 and |l2, p2〉 respectively, via (collinear) sponta-
neous parametric down-conversion (SPDC); type I or
type II SPDC will suffice, however coincidence coinci-
dence rates are higher for type II SPDC with a polarizing
beam splitter [1, 24–28]. The beams, anti-correlated in
OAM since lp = l1 + l2, are then directed into separate
branches by a 50:50 beam-splitter (see Fig. 1). The pres-
ence of the object will cause the state of a photon in the

object beam to transition from |l1, p1〉 to |l′1, p
′

1〉, while
the state of the reference photon remains unchanged.
The object’s OAM transition amplitude is precisely what
we seek to recover.

By inserting an additional beam splitter before sorting
the states, amplitude path-mixing is induced (see Fig. 1).
The resulting detection amplitudes in the upper (D+)
and lower (D−) detectors are, respectively, proportional

to |al
′
1l1

p
′
1p1

+ i| and |ial
′
1l1

p
′
1p1

+1|, neglecting overall constants

(Note that the amplitudes associated to |l2, p2〉 are 1 since
no transition takes place, hence those quantum numbers
do not appear in the beam splitter expressions.) The
proportionality constant is determined by the weighting
coefficients associated to the SPDC process [26]. This
means that the singles count rates N+ and N− in each
detector are given by

N+ ≈ |a
l
′
1l1

p
′
1p1

+ i|2 (4)

N− ≈ |ia
l
′
1l1

p
′
1p1

+ 1|2. (5)

We assume perfect detectors; imperfections can be
accounted for by methods described in [26]. The
singles rate equations can now be used to express both

the real and imaginary parts of the a
l
′
1l1

p
′
1p1

. However,

we must only use singles rates associated to coinci-

dence events. Thus, using the real part, <(a
l
′
1l1

p
′
1p1

) =√
N+ − 1− 1

16 (N2
+ −N2

− − 2N+N−)− 1
2 (N+ −N−),

and the imaginary part, =(a
l
′
1l1

p
′
1p1

) = 1
4 (N+ − N−) of

a
l
′
1l1

p
′
1p1

, alongside coincidences, we now have all necessary

information for image reconstruction.
Finally, let P (l1, p1; l2, p2) be the mutual probability

for detecting signal with quantum numbers l1, p1 and
idler with values l2, p2. The marginal probabilities at
the two detectors (probabilities for detection of a single
photon, rather than for coincidence detection) are

Ps(l1, p1) =
∑
l2,p2

P (l1, p1; l2, p2) (6)

Pi(l2, p2) =
∑
l1,p1

P (l1, p1; l2, p2). (7)

Then the mutual information for the pair is

I(s, i) =

lmax∑
l1,l2=lmin

pmax∑
p1,p2=0

P (l1, p1; l2, p2) (8)

× log2

(
P (l1, p1; l2, p2)

Ps(l1, p1)Pi(l2, p2)

)
The setup in Fig. 1 can be used, accounting for the

SPDC weighting coefficients, to generate OAM coinci-
dence spectra, as we shall see in Sec. III. Alternatively,
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one can simply remove the second beam splitter and
measure the coincidences directly; images will not be at-
tainable since only the transition amplitude magnitudes
will be known, but the spectral signature of objects may
still be obtained [1, 19]. Which version of the setup one
uses will depend on the application at hand, in particular
whether or not an image is desired or a spectral signature
will suffice.

So far we have assumed the experimenter has the abil-
ity to discriminate different p values while sorting OAM
states. However, in reality such a discrimination is be-
yond current experimental means [28]. Therefore, to
demonstrate the full implications of the above detection
method, we must (presently) rely on simulation methods,
described in Sec. III.

III. IMAGING AND INFORMATION

Successful imaging of any object that has significant
radial structure with CSI requires the ability to discrimi-
nate OAM states with p > 0, since the expansion basis for
T̂ depends upon distinct contributions from each (p′, p)
combination in the set of basis states (see Eq. (2)). In
the simulations below, we use digitized representations
of various opaque objects to directly compute Eq. (3)
in order to study the effects – on spectral signature, im-
age reconstruction accuracy, and mutual information – of
translating the target objects off-axis with respect to the
beam’s center. In addition to image reconstructions we
show many joint OAM coincidence spectra and use these
spectra to perform mutual information calculations us-
ing Eq. (8). As discussed Sec. II B, the spectra may be
constructed from singles measurements combined with
coincidence measurements and the addition of a second
beam splitter before detection (as we simulate here), or,
directly measured in a coincidence-only setup, with no
second beam splitter, as in [19]. Although the nature of
the simulations requires some stored information about
the objects (namely, their transmission profiles are stored
as matrices of zeros and ones), we would like to stress that
the measurement apparatus requires no optical compo-
nents to be placed in the vicinity of objects. Thus the fol-
lowing simulations outline a remote OAM-based imaging
and object recognition technique that can be tested ex-
perimentally as soon as reliable methods for distinguish-
ing p > 0 states are developed.

A. Imaging Complex Objects

The experimental results of [19] briefly discuss the role
of symmetry in an object’s joint OAM spectrum. The
most important point for our purposes is that objects
with simple N -fold rotational symmetry leave their im-
print on the off-diagonal (in particular, the lo + lr = N)
elements of the joint spectrum. More generally, suppose
that the object has a rotational symmetry group of order

(a) (b)

(c) (d)

FIG. 2: (a) Opaque star object of max width 0.9w0 and, (b)
the CSI reconstruction using lmax = 10, pmax = 7; (c) The
joint OAM spectrum of the star, having summed over all p,
and (d) the same spectrum with the conservation diagonal
removed.

N ; i.e., it is invariant under φ→ φ+ 2π
N . From Eqs. (2)

and (3) it follows that the coefficients must then satisfy

a
l′1l1
p′1p1

= e
2πi
N (l′1−l1)a

l′1l1
p′1p1

, which implies a
l′1l1
p′1p1

= 0 except

when
l′1−l1
N is integer. When N goes up (enlarged symme-

try group), the number of nonzero a
l′1l1
p′1p1

goes down; with

the probability concentrated in a smaller number of con-
figurations, correlations increase and mutual information
goes up, as we will see below.

It is also worth noting that the objects used in [19],
while having width much smaller than the beam waist,
had length that extended far beyond the beam radius.

Fig. 2(b) shows the joint spectrum of a simple 5-
pointed opaque star (with 5-fold rotational symmetry)
whose dimensions are confined entirely within the beam.
The object’s lack of radial extension causes a decrease in
magnitude of the l = ±5 components of the joint spec-
trum, since the LG modes of higher momentum (higher
l) do not interact with the object . Consequently, the ob-
ject’s spectral signature in the off-diagonal components
of the joint OAM spectrum becomes visually less obvi-
ous. However, as Fig. 2(d) shows, by setting the diago-
nal components of the joint spectrum to 0 and rescaling
the colormap used to view the spectrum, the off-diagonal
contributions become much more visible. Since it is these
off-diagonal contributions that carry the extra informa-
tion upon which the CSI setup is based, in order to im-
prove the contrast of off-diagonal spectral components,
we will zero out the conservation diagonal (states with
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(a)

(b)

(c)

FIG. 3: (a) Opaque fighter jet object of max width w0 and,
(b) the CSI reconstruction using lmax = 10, pmax = 7; (c)
The joint OAM spectrum of the fighter jet, summed over all
p with the conservation diagonal removed.

lo = −lr) for the remaining object spectra simulated in
this report. The image reconstructions will include the
contributions of the lo = −lr states.

Figs. 3(b) and 4(b) simulate the ability of the CSI
method to image objects with more complicated, less
symmetric transmission functions T (r, φ). The joint
spectra shown in Figs. 4(c) and 3(c) are clearly less com-
pact than those of simpler objects, like the star. This is
to be expected when one views complicated objects as a
superposition of many simpler, symmetric objects trans-
lated with respect to the beam axis: as shown below (Sec.
III B), translation with respect to the beam axis, even for
simple objects, spreads the joint spectrum.

B. Off-Axis Translation and Mutual Information

In Figs. 5, 6, and 7 we show the image reconstruc-
tion and spectral signatures of the same objects shown in
Figs. 2, 3, and 4 respectively after having been shrunk

(a)

(b)

(c)

FIG. 4: (a) Opaque tank object of max width 0.7w0 and, (b)
the CSI reconstruction using lmax = 10, pmax = 7; (c) The
joint OAM spectrum of the tank, summed over all p with the
conservation diagonal removed.

(a) (b)

FIG. 5: (a) The CSI reconstruction of a translated opaque
star, using lmax = 10, pmax = 7; (b) The joint OAM spectrum
of the translated star, summed over all p with the conservation
diagonal removed.

by a factor of 4 and translated radially with respect to the
beam axis by approximately 0.7w0− 0.9w0. The effect of
translation is most obvious in the case of the star, whose
centered spectral signature is quite sparse compared to



5

(a) (b)

FIG. 6: (a) The CSI reconstruction of a translated opaque
fighter jet, using lmax = 10, pmax = 7; (b) The joint OAM
spectrum of the fighter jet, summed over all p with the con-
servation diagonal removed.

(a) (b)

FIG. 7: (a) The CSI reconstruction of a translated opaque
tank, using lmax = 10, pmax = 7; (b) The joint OAM spec-
trum of the tank, summed over all p with the conservation
diagonal removed.

those of the tank or fighter jet. Namely, we observe that
translation with respect to the beam axis causes a spread-
ing in the spectral distribution. Although the exact dy-
namics of the spectral spread caused by translation vary
from object to object, we note that once the object is suf-
ficiently far from the beam center – not surprisingly – the
conservation diagonal is all that remains, all off-diagonal
components going to zero.

Given the variation in spectral signature as the ob-
ject is translated through the beam field, we expect to
see a corresponding variation in the mutual information
carried by the components of the joint OAM spectrum.
To calculate this change, we simulated the spectra of
the above objects several times, linearly translating them
with each iteration, starting from the beam center and
ending effectively outside of the beam field completely.
For each position the mutual information was calculated
using Eq. (8), and the results are plotted as a function
of distance in Fig. 8. Since we are in this study primar-
ily interested in the information content of the heretofore
unconsidered off-diagonal components of the joint OAM
spectrum, we again zero out the conservation diagonal
for all spectra so that the mutual information calculated
represents information carried exclusively by off-diagonal
components of the spectrum.

FIG. 8: Mutual information carried by off-diagonal compo-
nents of joint OAM spectrum, for various objects, as a func-
tion of distance from beam center with lmax = 10, pmax = 5;
increasing pmax will increase the mutual information substan-
tially. Note that each object’s off-diagonal information con-
tent exceeds one bit per photon at the beam center.

We see that even for complex objects near the beam
center, the mutual information carried by off-diagonal
components of the joint OAM spectrum exceeds one bit
per photon. As expected, the information goes to zero
as the object moves sufficiently far from the beam cen-
ter. Note that the simpler the object here – the star –
carries the most off-diagonal information, consistent with
the argument made in Sec. III A, that enlarged symme-
try groups cause an increase in correlations which in turn
causes the mutual information to go up. In fact, as we
increase pmax and the objects’ symmetries are better ap-
proximated, the mutual information for each object goes
up. In Fig. 8, p ∈ (0, 3) with the star’s Imax ≈ 2.6
bits/pho. Increasing pmax to 7 gives an Imax ≈ 3.3
bits/pho in off-diagonal components.

C. Discussion

The above simulations demonstrate the informational
capacity of off-diagonal components in the joint OAM
spectra. We have exploited this capacity for the pur-
poses of imaging and object identification by way of the
joint OAM spectral signature. Current experimental bar-
riers, namely the inability to easily detect p > 0 modes
at the single photon level, present difficulties in physi-
cally implementing the experimental apparatus required
to recover the phases of the amplitudes needed for im-
age reconstruction. However, as our simulations indicate,
such an apparatus would be capable of using the infor-
mation contained in the off-diagonal components of the
joint OAM spectrum to remote image unknown objects
without any record of the spatial distribution of the pho-
tons measured.
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IV. CONCLUSIONS

The spectral signatures simulated in the final sections
of this letter rely only on coincidence measurements.
This means that, where a set of objects with unique sig-
natures or symmetries is in question, our method can
be used to detect the presence or absence of objects in
question in relatively few measurements as compared to
pixel-by-pixel imaging methods.

A number of novel applications suggest themselves
based on the results above. For example, note that if
the object is rotated, the outgoing OAM states simply
pick up an overall phase that does not affect the joint
OAM spectrum. This could be useful, because it allows
a rapidly rotating object to be identified from its OAM
spectrum using slow detectors and a small number of
measurements. In some circumstances, this may be less
expensive and more practical than the use of high speed
cameras.

The high mutual information capacity of off-diagonal
OAM spectral components also makes our method well
suited for sensing rotational symmetries in few measure-
ments. Due to the fragility of OAM states, the advan-
tages of our setup may best be exploited in small scale
biological or production contexts. For example, the scan-
ning of a biological sample using correlated OAM mea-
surements may enable efficient detection of the presence
or absence of certain structures based on the compari-
son of theoretical and observed coincidence rates of off-

diagonal spectral components. And, since objects suffi-
ciently far from the beam center do not affect the coin-
cidence rates, as seen by the mutual information plots
in Fig. 8, we can be confident that a sufficiently small
beam waist will yield accurate spectra. Biological apop-
tosis (so-called programmed cell death) is one context in
which the presence or absence of cell symmetries plays
an important role, since apoptotic cells lose their sym-
metry, and so a change in the distribution of symmetries
may indicate a cancerous sample. Sickle cell anemia may
provide another avenue for future research, since normal
red blood cells have circular symmetry, but sickle cells
do not.

The research above furthers the informational analysis
of off-diagonal joint OAM spectral components, in ad-
dition to demonstrating the full reach of CSI’s imaging
capabilities. We have seen that not only do these off-
diagonal components carry information that allows im-
age reconstruction, but they do so at rates which can well
exceed the bit per photon limit at significant distances
from the beam center.
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