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Abstract

We investigate how “top-N percent” policies in college admission af-

fect diversity at the high-school level. These policies produce incentives

for students to relocate to schools with weaker competition. We provide

theoretical conditions under which such school arbitrage will contribute

to the desegregation of high schools. Along the way, we show that ar-

bitrage can neutralize the policy at the college level and characterize

inter-school flows, which display a cascade effect. Our model’s predic-

tions are supported by empirical evidence on the effects of the Texas Top

Ten Percent Law, indicating that a policy intended to support diversity

at the college level actually helped achieve it in the high schools. Thus

top-N percent policies may provide a new instrument for the long sought

goal of achieving high school integration.

Keywords: Matching, general equilibrium, affirmative action, educa-

tion, college admission, high school desegregation, Texas Top Ten Per-

cent.

JEL: C78, I24, I28, D50, J78.
∗For valuable comments and discussion, the authors are grateful to Matteo Bobba, Michael

Kremer, Louis-Philippe Morin, Bill Dickens, and seminar participants at BU, Bristol, Essex,

EESP FGV, FEA-USP, FEA-RP, IZA, Mannheim, NGO, Northeastern, Ottawa, PUC-Rio,

UQAM, and Wilfrid Laurier University. Gall thanks DFG for financial support (Grant GA-

1499) and BU for its hospitality. The research leading to these results has received funding

from the European Research Council under the European Union’s Seventh Framework Pro-

gramme (FP7-IDEAS-ERC) / ERC Grant Agreement n0 339950. Chaker El Mostafa and

Deborah Goldschmidt provided excellent research assistance during this project.
†Sao Paulo School of Economics - FGV.
‡University of Southampton, Southampton, SO17 1BJ, UK; email: t.gall@soton.ac.uk.
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1 Introduction

Could a law designed to maintain racial diversity in a state’s universities help

to integrate its high schools instead? Based on a theoretical and empirical

analysis of the effects of such a policy implemented in the state of Texas, we

show that it can.

Ever since Brown vs Board of Education, desegregation policies in the US

have overwhelmingly been implemented by mandate. The main desegregation

instrument, busing, took students out of their neighborhoods to faraway schools

at significant private and social cost, resulting in political tension and even

violence. The policies have been undermined by arbitrage, especially by whites,

in the form of flight to the suburbs or enrollment in private schools. Such

arbitrage limited the effects of desegregation laws, and increased differences

in segregation between districts (Clotfelter, 2004, 2011; Logan, Oakley and

Stowell, 2008). For example, though other factors may also have contributed,

the percentage of blacks in majority white schools in the U.S. South, which had

been trending upward since 1954, peaked in 1986 and then began to fall, so

that by 2011 was back at its 1968 level (Orfield, Frankenberg, Ee and Kuscera,

2014).

This experience raises the question of whether a policy could be designed to

harness market forces in a way that could help rather than hinder high school

integration. For the economist, the most natural approach would be to provide

monetary subsidies to whites who move to non-white districts or to tax them

for staying in white districts. But not only would this raise a political ruckus,

it would be unlikely to pass constitutional muster for its failure to be “color

blind.”

One color-blind strategy would be to offer tax breaks that are dependent

on the relationship between a student’s achievement (measured for example

by standardized test scores) and those in the school he attends. A tax that

decreases in the difference between his own achievement and the mean in the

community, in which he attends high school, could make it attractive for a high

achiever to move to a district in which mean achievement is low. If race and

achievement are appropriately correlated, the attendant movement potentially

would decrease racial segregation. Such policies have been absent in practice,

however, possibly because of the evident budgetary and political costs they

would impose.
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An alternative instrument to monetary incentives is the allocation of valu-

able slots (civil service jobs, places in state universities) controlled by the policy

maker at some level subsequent to high school. Thus the policy maker could

allow the probability of obtaining a job or university admission to depend on

the racial or achievement distribution of the school one attends (a special case

of a “club-based policy” proposed in Gall, Legros and Newman 2009). For

instance, suppose that for a given academic achievement level, admission to

the university is a decreasing function of the difference between the a student’s

achievement and some average for his school. Then moving to a school with a

lower difference will increase the probability that the student is admitted, and

will create incentives for movement within the public school system.

It turns out that such a set of policies does exist, although they were ostensi-

bly designed for something else, namely ethnic integration of universities rather

than schools. How one of these policies performs theoretically and empirically

as a high school integration device is the subject of the present paper.

In the late 1990’s, several U.S. states, including three of the largest (Cal-

ifornia, Texas, and Florida) passed “top-N percent” laws, guaranteeing state

university admission to every high school student who graduates in the top N

percent of his or her class.1 Following court decisions earlier in the decade,

the use of affirmative action policies to maintain racial or ethnic balance in

higher education was discontinued. The top-N percent laws (or top-n laws for

short) were adopted in response: since high schools were highly racially seg-

regated, the expectation was to draw a representative sample of the statewide

high school population, guaranteeing diversity on campus.

Though top-n laws have attracted academic attention with respect to their

efficacy in achieving the college diversity goal – the consensus appears to be

that in this dimension, they have fallen rather short – there has been no study

of the potential role of this policy for increasing diversity in high schools. Our

theory and evidence serve as a first step in understanding the effects of policies

like top-n on high school composition

The implications of the arbitrage opportunity generated by top-n are hardly

straightforward, for two distinct kinds of reasons. First, movement between

schools by a even small fraction of students is fraught with externalities, which

obscures what the overall allocation of students to schools will be post-policy.

1California started admitting the top four, Florida the top twenty, and Texas the top ten

percent performing students of every high school.
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Second, even with a precise assessment of the flows of student achievement lev-

els across schools, there is no immediate implication for how all this movement

affects high school ethnic composition.

To see the first complication, suppose that a top-10 law is imposed in a

state whose flagship university has only enough capacity for the top 10% of the

state’s students. Consider a high quality school that sent its top two deciles

of students to the flagship pre-top-10. The second decile of students is now no

longer eligible, and can can find places in other schools in which they would

figure in the top ten. But upon their departure, the students in the 10th

percentile are no longer eligible either because of an “outflow externality” due

to the population drop (the 10th best student in a school of 100 is in the top

decile, but not so in a school of 90). So some of the students in the top decile

will have an incentive to move as well.

These students’ target schools are also affected. If the school population

increases as a result, this could cement some students’ place in the top decile

(for instance, if the incoming students are weaker than they are). On the other

hand, students who might have been in the top decile of a school before the

policy may find themselves out of it if incoming students have higher achieve-

ment (an “inflow externality”), and thus may be induced to move elsewhere.

Because of all these effects, the overall degree of churning may be larger (or

smaller) than what may be expected if movement were limited just to the

initially impacted.

The second issue is that achievement-based flows need not reduce racial seg-

regation if, for example, the high achievers who move out of a top school into

a mid-level one are predominantly from a majority group, while the students

they displace into a low-quality, predominantly minority school are predomi-

nantly minority themselves. In such a case, the effect of the top-n law would be

to increase segregation. Predicting the effects of top-n laws therefore requires

finding conditions under which the movements it induces lead to more rather

than less integration.

We provide a “general-equilibrium” model of students’ relocation following

the policy change and establish two general and robust results. First, the

Top-N Percent Neutrality Theorem states that if the private cost of moving

across high schools is sufficiently low, the equilibrium sets of admitted students

in university with and without a top-n policy are identical. This result is

consistent with the disappointing performance of top-n policies in achieving
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ethnic integration of the universities. But it also tells us that in terms of top-n

policies, high schools could be where the action is.

Specifically, our second main result, the Unbiased Mixing Theorem, shows

that arbitrage must reduce the overall level of ethnic segregation at the high

school level, as conventionally measured, if the flow of students between any

pair of schools is ethnically representative of their origin schools. Hence, the

movement of arbitrageurs across schools has the potential to blend the ethnic

composition of all high schools.

In the case in which high schools can be ranked by their achievement dis-

tributions, the equilibrium analysis (summarized in Proposition 1) highlights

an amplifying effect of relocation: movement of students will not confined only

to the relatively few students who are just below the N% threshold in their

original schools. Rather, there is a general-equilibrium effect in the form of a

“cascade,” resulting from the two inflow and outflow externalities alluded to

above, which in this case both serve to increase flows. Students who move into

a lower-quality school displace some of those who previously were above the

threshold, departures renders some students above who were above the thresh-

old ineligible as well because of the shrinking school population. The result is

that displaced students then move further down, displacing others, and so on,

leading to considerably more churning than a simple count of the initially im-

pacted students would suggest. It is this result that gives hope to the possible

efficacy of top-n and similar policies as a practical policy tool.

The hypotheses of the two theorems are sufficient for the policy to increase

high school integration while leaving university enrollment unchanged. There

are (extreme) violations of unbiasedness that may not lead to an increase in

the high school integration, but more reasonable deviations from unbiasedness

are consistent with an increase in high school integration.

Though the neutrality theorem is broadly consistent with empirical findings

on the effects on university diversity of the top-n laws, the mixing theorem has

no counterpart in the empirical literature. Our second contribution is to provide

evidence for it, as well as for our theoretical mechanism.

We use a rich data set constructed using a combination of multiple admin-

istrative and public school census data from Texas. We find that there was

indeed a drop in high school racial segregation associated to the introduction

of the top-n policy, and that the flow of students is consistent with the assump-

tion of unbiasedness (or limited unbiasedness), and our theoretical mechanism.
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Furthermore, since Texas’s top-n policies mainly condition only on class rank

in the final years of high school, students who value attending their initial

school will delay a school change as long as possible if the cost of moving away

from one’s school is decreasing in the time spent in that school (for instance if

students want to keep in touch as long as possible with their friends.)

Figure 1 provides a first glance at the evidence, showing a time series of

high school segregation – measured by the mutual information index – for 9th

and 12th grades of all Texas high schools from 1990 to 2007.2 The mutual

information index measures segregation by indicating how well information

about a student’s high school predicts that student’s ethnicity. Consistent

with our reasoning above, a substantial drop in segregation coincides with the

introduction of the policy in 1998 for 12th grade but not for 9th grade.3 Trends

in residential segregation do not explain the pattern in Figure 1, see Figure 4

in the Appendix.
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Figure 1: Time series of the mutual information index for 9th and 12th grades.

This observation is corroborated at the high school level using a difference-

in-differences estimation strategy on an index of local segregation. In line with

the theory, we test for a significant change in the difference between the degree

of segregation in 12th and 9th grades after 1998. This is indeed the case across

several specifications, controlling for school-grade unobserved heterogeneity. To

account for possible cohort effects we also examine whether the policy change

2One school is excluded from the analysis due to an atypical large number of students

with Native American origins in 1998.
3Using alternate measures of segregation, such as the Theil index, yields similar pictures.

See appendix for further graphs corresponding to 10th and 11th grades. The policy was

announced in 1996, signed into law in early 1997, and took effect with 1998-99 school year.
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affected the behavior of high school segregation over time within a cohort. In-

deed, we find that the difference in within-county segregation between 12th

and 9th grades of the same cohort has decreased significantly after the intro-

duction of the policy. This suggests that, as predicted, moves between schools

have led to the decrease in segregation. To investigate these moves we use

individual-level data. We find that the pattern of moves taking place during

11th and 12th grades changes with the introduction of the policy: students

became more likely to move to schools with less college-bound students and

lower SAT average. These effects are significant for moves taking place within

school districts.

We also find that student movement appears to be unbiased. This empirical

corroboration of the unbiasedness assumption in the mixing theorem lends

credibility to the mechanism highlighted by our theory.

Thus a policy instrument that may appear to have yielded disappointing

results with respect to integrating universities, may nonetheless be a powerful

tool for achieving integration in high schools. More generally, our results show

that integration at lower educational tiers can be achieved by rewarding relative

performance without the need to force integration or to condition on race.

Literature

High school integration has been a goal of policy makers at least since the

1950’s. Benabou (1993) highlights the inefficiencies linked to residential seg-

regation resulting from mobility, and Durlauf (1996) makes the general case

for the social benefits of intervention in matching markets “associational re-

distribution”) such as schools or communities. Overwhelmingly, most policies

that have been implemented have tried to impose diversity at the high school

level directly. Lutz (2011) summarizes the history of court-ordered high school

integration in the USA, as well as the resulting political tensions these orders

created.

Our model shows that integration in high schools may be increased indirectly

by giving priority to the best students from any high school. The general

equilibrium relocation effects of the policy proceed from a well understood

principle (at least since Tiebout, 1956): if a policy changes the relative returns

of different associations, individuals will be tempted to relocate. This arbitrage

has not escaped scholars who studied educational policies. For instance, in their

survey of affirmative action, Fryer and Loury (2005) suggest that “color-blind”
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policies, of which top-n is an example, may induce students to move schools or

to choose less challenging courses in order to increase their chances of benefiting

from the policy. Cortes and Friedson (2014) document above-trend real-estate

price increases in neighborhoods that could be “natural” targets for students

who try to arbitrage the top-n laws. Cullen, Long and Reback (2013) estimate a

very small aggregate increase in cross-school movement by high school students

directly affected by the Top Ten Percent Law in Texas.

None of these papers present a model that could articulate and quantify

the general equilibrium consequences of relocation induced by a policy, and, in

the case of Texas Top-n law, do not examine the law’s impact on high school

racial and ethnic composition, which is the main focus of this paper.

In addition to guiding us toward uncovering new empirical regularities on

the effects of top-n policies, our model provides a unifying framework for a

number of existing and separate findings in the empirical literature on the

effects of the Texas Top-n law: that racial integration in flagship universities

in Texas was not much affected by the law (Horn and Flores, 2003; Kain,

O’Brien and Jargowsky, 2005; Long and Tienda, 2008), consistent with our

Neutrality Theorem; that top-n-induced strategic school enrollment choices of

8th graders directly affected by the law had only minimal effects in terms of

mobility (Cullen, Long and Reback, 2013), this small effect contrasts with our

empirical findings but is consistent with our two observations that the law also

induces (by the cascade effect) students who are not directly affected to move,

and that mobility is likely to be stronger in 11th or 12th grades; and that,

following the law, more high schools send students to the flagship universities

(Long, Saenz and Tienda, 2010), consistent with the fact that university-bound

students move to lower-ranked schools.

In the next section of the paper, we lay out a simple model of school choice

that generates testable predictions about flows across schools and their effects

on segregation. Then, in Section 3, we confront the data. Finally we offer some

remarks about the possibility of broadening top-n laws in order to increase high

school integration. All tables and figures omitted from the text can be found

in the Appendix.
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2 Conceptual Framework

2.1 The Basic Model

The economy is populated by a unit-measure continuum of students, each char-

acterized by an educational achievement a ∈ [0, a].4 Each student is initially

enrolled in one of a finite set of high schools s ∈ {1, ..., S}. School s has mea-

sure qs of students, with
∑S

s=1 qs = 1 and is characterized by its distribution

of achievements Fs(a), which has support [0, ā]. The aggregate distribution is

F (a) =
∑S

s=1 qsFs(a).

Prior to admission to college, each student initially in a school s may (re)-

locate by selecting a school s′ at a cost c(s, s′) ≥ 0; remaining in one’s initial

school is costless (c(s, s) = 0). It will simplify matters to suppose that from

any initial school, the relocation costs among all target schools are unique: for

each s, c(s, s′) 6= c(s, s′′) whenever s′ 6= s′′.

Note that this model can accommodate an interpretation in which there

are positive effects of school characteristics on human capital. For instance,

advance placement courses or inspiring teachers will increase the set of skills

needed to perform well at the university or in the labor market, in which case

student i has a total skill ai+ri(s) for future performance, where ai is the ability

we use in the model and ri(s) is this future return from attending school s. The

difference ri(s)− ri(s′) is part of the cost c(s, s′).

Location decisions are made simultaneously after the admission policy is

announced, and we consider Nash equilibria in location choice. Schools have

no say in the location decisions; as is the situation in most public schools in

the US, any student becomes eligible to attend a high school simply by moving

into its geographic catchment.5

Upon graduation, students can either go to the university U or pursue an

alternative option, denoted u, which could be moving to another, less presti-

gious, state university, or moving to an out-of-state university, or entering in

the labor market. A policy maker controls admission to the U , which has fixed

4We abstract here from peer effects within schools that could bear on achievement. Thus

a is best interpreted as capturing parental or community investment in students in early

childhood or primary and middle school.
5In practice, students sometimes can gain admission to local schools at even lower cost,

e.g., by claiming to live with a relative in the catchment or having a parent rent a small

dwelling there.
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capacity k < 1. U is more desirable than u for all students in the population

– students for whom u is preferred to U will not be competing for spots in the

U under any policy, and so can be ignored for the purposes of this analysis.

Specifically, for a student of achievement a, the return to attending the U is

U(a), which strictly exceeds u(a), the return to attending u. The notation sig-

nifies that returns may vary across education levels, as may the interpretation

of the opportunity cost u(a) of attending the U : for some levels it might mean

the value of attending another university than U , while for others it might be

the value of immediate entry into the labor market. A student of type a who

moves from s to s′ and enters the U (resp. u) receives payoff U(a) − c(s, s′)
(resp. u(a)− c(s, s′)).

We will be comparing an initial admission policy selecting the top achievers

in the state, (hence a “school-blind” policy), against a top-n law that admits

the top N percent in each high school; if there is a residual capacity, the rest

of the places in the U are covered by the school-blind policy.

Under a school-blind policy, the university U admits all students with the

highest endowments, up to capacity. Since all students admitted strictly prefer

the U , they will attend, and the marginal student achievement a∗ satisfies

F (a∗) = 1− k. (1)

Since location is irrelevant to attending the U under the school-blind policy, no

one has any incentive to relocate (and if there is any cost to moving, a strict

incentive not to).

Now consider a top-n policy. In this case, every student in the top n per-

centile of his high school class is admitted to the U , and the residual capacity

k−n is allocated on to the highest-achieving students in the state who have not

already been admitted. Because students may decide to move across schools

as a result of the policy, there will be new distributions F̂s(a) in each school.

Formally, the policy induces a location game in which students simultane-

ously choose moving strategies, i.e., maps σ(a, s, s′) ∈ [0, 1] indicating the prob-

ability that a student of achievement a moves from initial school s to school

s′; thus,
∑

s′ σ(a, s, s′) = 1. An equilibrium is a profile σ of moving strategies

(σ(a, s, s′) ∈ {0, 1}) such that for almost all a and associated s, σ(a, s, ·) is a

best response to σ.6

6Since a student is admitted with probability 1 or 0 from his destination school and there

is never indifference between schools because moving costs are distinct, it suffices to consider

pure strategy equilibria.
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Our Neutrality Theorem states that as long as the cost of moving to any

school is less than the benefit U(a)−u(a) of attending the U , the set of admitted

students is the same as when the policy was not in place.

The logic behind why equilibria with and without the top-n policy must

have the same U enrollments is very simple. Suppose an equilibrium of the

relocation game induced by the top-n policy has a set of admitted students

that differs from that of the school-blind policy. Then somewhere in the state,

there is a “winner” aw < a∗ who is admitted, as well as a “loser” a` > a∗ who

is rejected (more precisely, there is a positive measure of winning achievement

levels, and because of the capacity constraint, an equal measure of losing levels).

Now, aw must be admitted as a member of the top n of his school and a` and

aw must be in different schools, else a` would also have been admitted under

the top-n rule. But now, a` can secure admission to the U , and strictly gains

from doing so, simply by relocating from his school to aw’s school. Thus we

are not looking at an equilibrium.

In the appendix we show an equilibrium always exists and is characterized

by a set of cutoffs, one for each school, weakly exceeding a∗ and such that each

student below his initial school’s cutoff and above a∗ moves to another school,

while all others remain.

Notice that the only types that might engage in arbitrage are the potential

losers (a ≥ a∗) from the top-n policy. Thus only their costs need to be compared

with the benefit of attending the U in order to reach the neutrality conclusion.

Theorem 1. (The Top-N Percent Neutrality Theorem). If c(s, s′) < U(a) −
u(a) for all students with a ≥ a∗, university enrollments under the top-n and

school-blind admission policies are identical.

Thus, with low moving costs, the top-n law will have no impact on enroll-

ment in the University. As a result, there can be no change in the ethnic,

socio-economic, gender, or racial composition of the student body there.

However, all of this movement is not neutral with respect to the composition

of the high schools.7 In particular, movement of students induced by the top-n

law may modify segregation by ethnic group or socio-economic status.

Let g ∈ G be a student’s ethnic or socioeconomic group, where G is some

finite set. Denote by pgs ∈ ps = (p1
s, ..., p

|G|
s ) the population share of group g in

7 Necessary and sufficient condition for some movement of students to occur is that there

is a school s such that 1− Fs(a
∗) < n. Then, absent any movement, the top-n policy would

allow some students in s with a < a∗ to enter the U , which contradicts neutrality.
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school s and by pg ∈ p = (p1, ..., p|G|) g’s share in the aggregate population. To

measure the degree of segregation we consider indexes of the form:

I(p, {ps}) ≡ A1(p)− A2(p)
∑
s

qsH(ps),

where A1(p) and A2(p) 6= 0 are functions of the aggregate distribution of groups

p, H(ps) is a concave function of the distribution of groups at school s, and qs

the measure of students in school s, with
∑

s qs = 1. A leading example is when

H(ps) =
∑

g p
g
s log(pgs) is the entropy of ps, A1(p) = H(p) the entropy of p, and

A2(p) ≡ 1, in which case I(p, {ps}) is the mutual information index (MMI).

If H(·) is the entropy, A1(p) = 1, A2(p) = 1/H(p), then I(p, {ps}) is Theil’s

information index (Theil, 1972; Theil and Finizza, 1971). Other segregation

indexes that are consistent with our formulation are the variance ratio index

(James and Taeuber, 1985) or the Bell-Robinson Index (Kremer and Maskin,

1996).

Intuitively, the mutual information index, which features in our empirical

analysis, is a measure of how much information the knowledge of the school

a student attends conveys on the student’s race, and vice versa. (The mutual

information index, as other entropy indexes, have desirable properties like de-

composability and scale invariance, see for instance Alonso-Villar and Del Ro

(2010), and are widely used.) For instance, if all schools have exactly the same

racial composition as the state, then the mutual information index is zero, as

knowing a student’s school does not allow any inference on the student’s race.

Conversely, a larger index value reflects that more information is gained on

students’ race by learning about their school.

2.2 Effects of Movement

To illustrate the effect of relocation, consider the case of two groups and three

schools, which have initial proportions p1
1 = 1, p1

2 = 1/2, and p1
3 = 0 of the

first group and equal masses of students, q1 = q2 = q3 = 1/3. Suppose that

the policy induces a random sample of students with mass m > 0 from school

1 to move to school 2. This movement makes school 2 more segregated, as the

proportion of the first group there moves away from the population average 1/2.

Schools 1 and 3 do not become less segregated either since the proportions of the

first group remains 1 in school 1 and 0 in school 3. Nevertheless the segregation

index I(p) will decrease! This is because, after students have moved, the
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population weight of the fully segregated school 1 decreases and the weight

of the now marginally segregated school 2 increases. The aggregate effect is

to decrease segregation, as concavity of H(ps) ensures that the increase in

population weight of the less segregated school 2 overcompensates the increase

in segregation in school 2.

To show this denote equilibrium quantities by hats. Then the new segrega-

tion index is

Î = A1(p)− A2(p) [(q1 −m)H(p1) + (q2 +m)H(p̂2) + q3H(p3))].

Because students move only from one school to another, not into or out of the

system as whole, A1(p) and A2(p) remain unchanged, so

Î − I ∝ mH(p1)− (q2 +m)H(p̂2) + q2H(p2). (2)

Since we can write p̂2 = m
m+q2

p1 + q2

m+q2
p2, concavity of H and p1 6= p2, imply

that

H(p̂2) >
m

m+ q2

H(p1) +
q2

m+ q2

H(p2).

Substituting this inequality into the right hand side of (2), we have Î − I < 0.

Indeed, this establishes that whenever two schools have different proportions

of the two groups, the segregation index will decrease after a move of a random

sample students from one school to another, because more students will be in

less segregated schools after the move.

The result and the mechanism at work in the example can be generalized

(see appendix) to any number of schools or groups, so long as the system

as a whole remains closed (no student exits and no new student enters) and

movement is (group) unbiased: the initial group distribution ps in school s is

equal to the distribution among those who move from s to any target school

s′. Formally, if ps,s′ is the group distribution among the movers from school s

to school s′, we have ps,s′ = ps for all s′.

Theorem 2. (The Unbiased Mixing Theorem). Suppose the school system

is closed, that schools initially have different proportions of groups, and that

movement of students is group unbiased. Then the segregation index I falls

following movement.

Of course, unbiasedness is only sufficient for reducing segregation, not nec-

essary. To illustrate this point, we revisit the case of two groups and three
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schools. Suppose initial proportions are p1
1 = 0.9, p1

2 = 0.5, and p1
3 = 0.1 of the

first group, with equal masses of students in each school, q1 = q2 = q3 = 1/3.

The overall degree of segregation (using the MMI) is approximately 0.107.

Suppose a tenth of school 1 students move out, with half of these targeting

each of the other two schools. If movement is unbiased, the new proportions

are p̂1
1 = 0.9, p̂1

2 = 0.52, and p̂1
3 = 0.14. In this case the Theorem applies, and

segregation decreases to 0.092. But even if there is biased sampling, for instance

with 0.7 instead of 0.9 of the movers being from group 1, the new proportions

p̂1
1 = 0.92, p̂1

2 = 0.51, and p̂1
3 = 0.13 yield a decrease in the segregation index to

0.102.

Finally, unbiased sampling might be accompanied by biased targeting and

yet still generate a decrease in segregation: suppose an unbiased sample from

school 1 splits along group lines, with all of the group 1 students targeting school

2 and all the group 2 students targeting school 3. Then the final proportions

are p̂1
1 = 0.9, p̂1

2 = 0.54, and p̂1
3 = 0.099. Even in this extreme case of biased

targeting, the MMI falls, to 0.103.

2.3 Equilibrium Flows

Putting additional structure on the achievement distributions and moving costs

allows one to characterize the location equilibrium and the associated flows

of students more precisely. Assume that schools are ordered by quality: if

s < s′, Fs(a) strictly first order stochastically dominates Fs′(a). That is, for

any a ∈ (0, a), Fs(a) < Fs′(a). The moving cost c(s, s′) strictly increases in

the “distance” between schools, captured by the absolute difference in their

indexes |s − s′|.8 In addition to geographic distance, this preference might

reflect horizontal differentiation of schools, or, perhaps more importantly, fixed

school characteristics that are correlated with quality, such as teacher or facility

quality or reputation. Finally, assume that at least one school s satisfies the

movement condition in Footnote 7, i.e. that 1− Fs(a
∗) < n, so that there will

be movement in equilibrium.

Under these conditions, we can show (see appendix) that there exists a

unique equilibrium outcome that is characterized by two properties.

8Even though distance measured in this way admits the possibility that c(s, s′) = c(s, s′′),

where s′ > s > s′′, it turns out with this construction, target schools always have index

higher than s, so that costs remain unique among targets.
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Proposition 1. Suppose that Fs(a) strictly first order stochastically dominates

Fs′(a) if s < s′, and that the cost of moving from s to s′ 6= s is an increasing

function of the distance |s− s′|. In the unique equilibrium outcome,

(i) There is a sequence of cutoffs {âs, s = 1, . . . , S}, with âs weakly decreasing

in s, and â1 > a∗ = âS. Only students with ability greater than âs are

admitted from school s.

(ii) In school s ≤ S − 1, students with ability in [âs′ , âs′−1) move to school

s′ ≥ s+ 1; students in [âs, a] and [0, a∗) do not move.

Hence in equilibrium students who would not get into the U from their

original school will move to the closest school that will enable them to obtain a

place at the U . Since schools are stochastically ordered, movement is always to

ex-ante lower quality schools, and to the best (nearest) school that will allow

a to be among the top n.

If n < k, then some students are admitted at large. The proof shows that

they are all drawn from the highest-quality (lowest index) schools, which share

a common threshold âL that exceeds the threshold for all other schools. There

is no movement into those schools. In the trivial case that n is very small (i.e.,

1− Fs(a
∗) ≥ n for all s), the policy has no bite, all schools have some at-large

admission with âL = a∗, and there is no movement at all.

Figure 2 is a graphical illustration of these flows. Students from school

1 with achievement closely below the cutoff â1 (with mass x1,2 in the figure)

will move to neighboring school 2, while their counterparts with achievements

closely above a∗ (with mass x1,3) need to move further to school 3 in order to

ensure admission to the U . School 2 students with achievements between a∗

and school 2’s cutoff (with mass x2,3) move to school 3.

Notice that “cascades” may be part of the equilibrium allocation, due to two

sorts of externalities. First is an inflow externality: in this example, school 2

students with achievements closely below â2 are crowded out by the competition

of incoming, high achieving students from school 1 (m2), inducing them to move

to school 3. And there is also an outflow externality: here, students just below

â1 were initially in the top n there, but following exit of students below them,

are no longer in the top n and therefore leave as well (it is easy to see that if

1−F (a1) = n, then a1 < â1). In general, both externalities will be operative in

schools other than 1, where only the outflow externality is at play, and school

S, where there is only an inflow externality. Thus the set of students who move
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is larger than those directly affected by the policy (i.e., those in [a∗, as], who

are below the initial top−n cutoffs in their original schools).9

As mentioned in the Introduction, there is evidence that the number of

schools sending students to the University of Texas increased after the intro-

duction of the Top Ten Percent Law. This is easy to see with the aid of the

present model: if, say, school 3 initially had no one above the threshold a∗, then

after the policy change, this school will have an inflow of above-a∗ students.

Now some students will attend the U from a school that previously had sent

no one. As the other two schools continue to send some students, the number

of sending schools has increased. This is a general result: all schools that sent

students to the U continue to do so under the top-n policy, and some that did

not before do so now. The set of sending schools cannot become smaller and

in general will increase. But the set of students who attend the U does not

change.

The flows described in this case will tend to equalize average achievement

across schools: this is an easy consequence of our characterization if the mean

achievement in school 1 (and therefore all other schools) is below a∗. Mean

achievement falls in schools that are net exporters (schools with the initially

highest distributions), and rises in schools that are net importers (initially

lowest). However, further assumptions need to be maintained if these flows

are to result in decreased ethnic segregation. As Theorem 2 tells us, group

unbiasedness is sufficient to assure this outcome.

a∗ = â3 â2 â1
school 1

school 2

school 3

x1,2x1,3

x2,3

m2 = x1,2

m3 = x1,3 + x2,3

Figure 2: Post-policy flows with three schools

One situation in which unbiasedness is satisfied is where every school’s

ethnic composition is independent of a: within a school, it is the same for all a,

9This can be checked from equation (16) in the Appendix.
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though it differs across schools. This situation could arise from a process similar

to the one in which public schools are chosen in the US and some other nations:

parents choose communities and the schools therein on the basis of their own

achievement, aspirations for their children, or other attributes correlated with

their children’s achievement.

To see how this works, denote these attributes α and suppose they take

S values s ∈ {1, . . . , S} with the frequencies qs in the population. Different

ethnic groups g have different distributions pg (pgs 6= pg
′

s for at least some s)

over the attributes, and qs =
∑

g p
g
s. In this case, a student’s achievement

is the realization of a random variable with distribution F(a|α), a continuous

distribution with support [0, a] that is stochastically decreasing in α. If parents

sort perfectly into communities by the attribute α then their children’s school

achievement distributions will be Fs(a) = F(a|s).
The distributions Fs(a) will be stochastically decreasing in s. Moreover,

the fraction of group g in school s will be pgs, and the achievement distribution

will be the same Fs(a) for each for each group in school s. Any sample of

students exiting school s will have the same distribution of groups, as will any

subsample entering another school s′. In this case the unbiasedness conditions

of Theorem 2 are satisfied by the flows depicted in Proposition 1 and it follows

that the top-n policy not only equalizes mean achievements across schools but

also reduces segregation.

To get some appreciation of the role played by independence for unbiased-

ness, consider the following example. Suppose that of the schools in Figure

2, Schools 1 and 2 are initially slightly integrated: they are populated by red

students, except for those in the interval [a∗, â2], who are all blue. School 3 is

entirely blue.10 Once the policy is implemented, students in [â2, â1), who are

all red, move from school 1 to school 2. Students in [a∗, â2), who are all blue,

move out of schools 1 and 2 into school 3. Thus after the policy, schools 1 and

2 are entirely red, while school 3 remains entirely blue: the outcome is now

perfect segregation, and integration has therefore decreased.

This example violates unbiasedness because the ethnic mix among movers

depends on the achievement level. As a group, the movers from school 1 are

ethnically diverse, more so than the school as a whole; the movers from school

2 are entirely blue but come from a largely red school. In neither case are the

10The initial situation might arise if blue parents take advantage of a metropolitan-area

busing program that sends inner-city blues to largely red suburban schools.
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emigrants ethnically representative of the school. More saliently, the targeting

is also biased: red movers target the overwhelmingly red school 2, while blue

movers target the entirely blue school 3. Notice this biased targeting occurs

even though there is no preference for ethnic groups motivating movement.

This case is rather extreme in the degree of bias. As we suggested above, for

more moderate departures from unbiasedness, the Unbiased Mixing Theorem

suggests that top−n policies will decrease segregation. Ultimately, whether

they do or not is an empirical question.

2.4 First Steps toward Bringing the Theory to the Data

A plausible hypothesis is that the distribution of ex-ante achievement referred

to in the discussion following the Proposition is stochastically increasing in

socio-economic status or higher for some ethnic groups than others. Texas

high-schools display some signs of student sorting, as shown in Figure 3: the

percentage of minority students enrolled at a high school correlates positively

with the percentage of economically disadvantaged students and negatively

with the high school pass rate in TAAS.11 That is, a school’s ethnic composition

is a good predictor of socio-economic status and test score results. Our results

would then suggest that the policy would induce student flows from better (i.e.

majority) to worse (i.e. minority) schools, and that these flows tend to consist

proportionally of majority students, which in turn would reduce segregation.
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Figure 3: Share of minority and economically disadvantaged students (left) and

share of minority and TAAS pass rate (right). Source: AEIS data.

11The figures use data for 1997, but the picture looks very similar for other school years.

A similar exercise using percentage of minority and average or median SAT score shows a

negative correlation.
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Under the top-n policy, students have the opportunity to choose not only

whether to move between schools but also when to move, conditional on eligi-

bility rules.12 Supposing therefore that students can choose the date at which

to move, the time spent in the initial school will affect the cost of moving. Mov-

ing early from one’s initial school is often costly: it is more difficult to make

long-lasting friends in the new school since existing students have already cre-

ated their social network; the initial school had been chosen because it was the

best at the time and moving early means spending more time in a less preferred

environment. An example is a simple modification of the cost function used in

Proposition 1, namely

c(s, s′, t) = F − t+ |s− s′|,

where F is a fixed cost of moving. Since the cost function satisfies the distance

property: ∀s, s′, s′′, ∀T , ∀t < T, c(s, s′, t)+c(s′, s′′, T −t) ≥ c(s, s′′, T ), students

will choose to move only once.

Corollary 1. For cost functions c(s, s′, t) decreasing in t and satisfying the

distance property, students move as late as possible from their initial school

and move directly to their final school.

Hence, students who move for strategic reasons will do so mainly in later

grades, suggesting that the effect on segregation should be small in early grades

and more pronounced in later grades.

2.5 Predictions

The results in the previous section show that if schools are segregated with

respect to socioeconomic background such as race or SES, a top-n policy may

induce some desegregation in background, if socioeconomic background corre-

lates positively with education levels. This is because the policy can change

individuals’ ranking of different schools, making it profitable to move to a school

that would not have been chosen without the policy.

There are three results from the theoretical analysis that we will be able to

test in our empirical analysis.

12As will be discussed later, the Texas Top Ten Percent Policy did not impose a minimum

stay period in order to be eligible and we could not find any evidence that school districts

enforced a minimum stay rule.
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P.1 Arbitrage by students leads to lower segregation index for high schools.

Hence the information index should decrease following the policy.

P.2 Students who arbitrage “move down”: they move from schools with higher

average educational achievement to schools with lower average educational

achievement.

P.3 Arbitrage should be more pronounced for students in the later grades.

3 A Closer Look at the Data

Figure 1 in the introduction suggests there was a persistent decrease in segre-

gation in 12th grade, but not in 9th grade, from 1998 onwards, which coincides

with the start of the Texas Top Ten Percent policy. In this section we will

investigate whether this is verified using school-level data and whether that is

consistent with strategic rematch using individual data.

3.1 Data and Descriptive Statistics

We use three databases for public schools in Texas for school years 1994-1995

to 2000-2001 obtained from the Texas Education Agency (TEA).13

The first database contains school-level enrollment data. We use data on

student counts per grade and per race/ethnicity (classified into five groups:

White, African American, Hispanic, Asian, and Native American).14 The data

are provided at the school (campus) level for all ethnic groups with more than

five students enrolled in school.15 We use this data to compute the segregation

13We do not have any information for students from private schools.
14We merge the school-level enrollment data with the Public Elementary/Secondary School

Universe Survey Data from the Common Core of Data (CCD) dataset of the National Center

for Education Statistics (NCES), accessible at http://nces.ed.gov/ccd/pubschuniv.asp. It

contains information such as school location and school type. By merging the TEA enrollment

counts and the CCD, using campus number (TEA) and state assigned school ID (NCES) as

unique identifiers, we have information on all schools that were active in Texas.
15If less than five students belong to an ethnic group in a given grade, the TEA masks

the data in compliance with the Family Educational Rights and Privacy Act (FERPA) of

1974. We use three different strategies to deal with masking: the first and the second replace

masked values by 0 and 2, respectively, and the third one replaces the masked value by a

random integer between 1 and 5. The results we report use the first strategy, but results

remain largely unchanged for the other strategies.
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measures that will be explained below.

The second one is the Academic Excellence Indicator System (AEIS).16 This

database provides information on several performance indicators at the school

level, e.g., average and median SAT and ACT scores, the share of students

taking ACT or SAT, of students above criterion, and of students completing

advanced courses.17

The third database contains individual-level data for students enrolled in

8th and 12th grades in a public school.18 For each student, we observe the

grade and school they are enrolled in, whether they are a transfer student,19

and their ethnic group and economic disadvantaged status. Each record is

assigned a unique student ID, allowing us to track students as they change

schools, as long as they remain in the Texas education system. The database

does not contain information on individual’s test scores. We restrict the sample

to students who switched schools at least once. These last two databases enable

us to identify patterns of students’ movements between schools.

Segregation Measures

To measure the degree of segregation empirically we use the mutual informa-

tion index and some of its components (for a discussion of this measure, see

Reardon and Firebaugh, 2002; Frankel and Volij, 2011; Mora and Ruiz-Castillo,

2009). As discussed above it measures the degree of segregation in terms of the

information that can be gained from the sorting of groups into schools, with

higher segregation corresponding to higher index values. Moreover, this index

is one of the few that is defined for multiple groups and can be aggregated over

several organizational layers such as school district, region, etc.

The basic component of the mutual information index is the local segregation

index. It compares the composition of a school s to the composition of a larger

16The data can be accessed at http://ritter.tea.state.tx.us/perfreport/aeis/.
17The data are based on students graduating in the spring of a given year. For instance,

the data for 1998-99 provides information on students graduating in the spring 1998.
18Like the other databases these data are subject to masking based on FERPA regulations.
19Transfer students are students whose district of residence is different from their district

of enrollment, or whose campus of residence is different from their campus of enrollment.

Transfers are authorized by the school subject to regulations (Civil Action 5281, available

at http://ritter.tea.state.tx.us/pmi/ca5281/5281.html), giving schools some discretion. For

instance, transfer requests may be denied if “they will change the majority or minority

percentage of the school population by more than one percent (1%), in either the home or

the receiving district or the home or the receiving school.” (Civil Action 5281, A.3.b)
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unit x (e.g., state, region, county, MSA, or school district):20

Mx
s =

G∑
g=1

pgs log

(
pgs
pgx

)
, (3)

where pgs and pgx denote the share of students of an ethnic group g = 1, ..., G

in school s and in the benchmark unit x (e.g., state, region, county, MSA,

or school district), respectively. In our regressions the benchmark unit is the

region.

We also use two aggregate measures of segregation that are constructed

from the local segregation index. The first, presented in the introduction, is

the mutual information index. It can be calculated as:

M =
S∑

s=1

psM
Texas
s , (4)

where MTexas
s is the local segregation index comparing school to state compo-

sition and can be obtained by using (3), and ps is the share of Texan students

who attend school s.

The second aggregate measure of segregation is calculated within the county.21

The within-county segregation index, W c, can be calculated as:

W c =
∑
s∈C

pscM
c
s , (5)

where psc is the share of students attending school s in county c, and M c
s is

given by (3) using the county as a benchmark unit. Note that the mutual

information index defined in (4) is the within-Texas segregation index.

Table 1 provides summary statistics for the main variables used in the re-

gressions. While the mean of the local segregation index (using the region as a

benchmark) has increased between the periods 1994-1996 and 1998-2000, the

increase seems to be less pronounced for 12th than for 9th grade.22 This is con-

sistent with a decrease in the difference of within-county segregation between

9th and 12th grades. The data also show that charter schools were established

20Note that these measures are calculated for a given grade in a given year. We omit the

subscripts here in order to simplify notation.
21We use the county, not the school district, as the relevant unit, since within-school district

segregation is zero by definition in school districts containing only one school.
22Using a placebo exercise, we show that the parallel trend assumption needed for our

differences-in-differences strategy holds, see Table 3.
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in the post-treatment period (1998-2000). While only 0.8% of counties had a

charter school in the pre-treatment years, that proportion increased to 9.5%

after 1998. However, the average proportion of students attending a charter

school is still very small (0.2%), but see below for a discussion of the role of

charter schools. The summary statistics of individual level data show that,

after the Top Ten Percent Law, moving students were more likely to move to

schools with less college bound students and lower SAT average.

3.2 Empirical Strategy and Regression Results

We now verify whether the differential change in segregation observed in the

aggregate for the whole of Texas is observed as well at the school and county

level, i.e., whether segregation of individual schools and counties has changed

differentially.

Under the Texas Top Ten Percent rule admission was granted based on the

class rank at the end of 11th, middle of 12th, or end of 12th grade. Therefore

strategic rematch may well have taken place as late as between 11th and 12th

grades for some schools, and we will focus on all possible rematch occurring

between 9th and 12th grades. Using 9th grade as the reference point means

losing any strategic rematch having occurred earlier than 8th grade in students’

careers, which will again bias the estimates downwards.

The Texas Top Ten Percent rule did not impose a minimum period at school

in order to be eligible for the policy, but allowed school districts to define rules

regarding that matter. We could not find any evidence that districts imposed

minimum attendance rules in order to qualify for the Top Ten Percent rule.23

Moreover, even if some did, this would bias our estimates of the policy effects

downwards.

Local Segregation Index

We use a differences-in-differences approach and start with 9th grade as the

control group and 12th grade as the treatment group. Below we also introduce

10th and 11th grades to check for effects of the policy on these grades.

The dependent variable of interest in our difference-in-difference approach is

the local segregation index M r
yst (defined in (3)) for grade level y in school s at

23For instance, we contacted three large school districts by phone and none of them had

any such rule in place.
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time t, where the benchmark unit is the region r to which the school belongs.24

We consider school years 1994-1995 to 1996-1997 to be pre-treatment, while

1998-1999 to 2000-2001 correspond to post-treatment periods.25 Since the pol-

icy was signed in 1997 and implemented in 1998, school year 1997-1998 may

be partially affected by the reform and is therefore excluded from the analysis.

For grade levels y = {9; 12} we estimate the model:

M r
yst = β1 (G12ys × POSTt) + δδδ′T + uys + εyst, (6)

where G12ys = 1 if y = 12, POSTt = 1 if t ≥ 1997, T is a vector of year

dummies (or region-year dummies), uys is a school-grade fixed effect, and εyst

is the error term. The school-grade fixed effect allows for time invariant school

heterogeneity that may vary by grade. The vector of year dummies, T, controls

for the overall trend in segregation of all schools in Texas. Some specifications

also allow these trends to be region-specific to control for changes in the student

population in a given region that may be caused by immigration, for example.

The coefficient of interest in this regression is β1 and it indicates the relative

change in the local segregation index in the grade and school years affected by

the Top Ten Percent Law.

The estimation results are presented in Table 2. Columns (1) and (2) show

a significant decrease in school segregation for 12th grade as compared to 9th

grade coinciding with the Top Ten Percent Law. The relative reduction in 12th

grade corresponds to about 3% of a standard deviation in the local segregation

index. Interestingly, additional regression results (available from the authors)

indicate that this effect is not driven by schools located in larger school dis-

tricts or in MSAs. Thus, the effect we find seems not to operate through greater

school choice in the neighborhood, but rather through strategic choice of stu-

dents who move house and school district, possibly for exogenous reasons such

as a parental job change. We will return to this issue below.

Finally, we include data on 10th and 11th grades to detect in which grade

24We adopt the Texas Educational Agency’s classification, which divides Texas into 20

regions. Each of these regions contains an Educational Service Center (ESC) and provides

support to the school districts under their responsibility.
25The results are very similar when using different masking strategies (i.e., replacing

masked observations by 2 or a random integer between 1 and 5). If we add or exclude

one school year on the pre- and post-treatment, the results also remain the same.

24



the decrease in segregation took place. For y = {9, 10, 11, 12}, we estimate:

M r
yst =β1(G12ys×POSTt) + β2(G11ys×POSTt) + β3(G10ys×POSTt)

+ δδδ′T + uys + εyst, (7)

The results are presented in columns (3) and (4). In both specifications, we

cannot reject that the magnitudes of the coefficient estimates are identical.

However, the estimates for the 10th grade are not statistically significant at

conventional levels. That is, while some of the decrease in segregation may have

already happened by 10th grade, a significant change occurs only beginning

with 11th grade. There seems to be little action between 11th and 12th grade

in terms of a change in segregation.

A possible concern with the results presented in Table 2 is that they may

reflect pre-existing trends in the local segregation indexes. As a placebo, we

run equations (6) and (7) for school years 1990-1991 to 1996-1997, excluding

1993-1994. Table 3 presents the results. The coefficient estimates are positive

and not statistically significant. This indicates that our results for the Top Ten

Percent Law in Table 2 are not driven by pre-existing trends in the data.

Within-County Segregation

Another potential concern is that the observed relative decrease in segregation

after 1998 could be due to a cohort effect. In principle, there could be some

idiosyncrasies in later or earlier cohorts that generate the observed decrease

in segregation. A closer look at Figures 1 and 6 indicates a slight decrease in

segregation in 9th to 11th grades in the years 1995 to 1998.

In order to investigate this issue we focus on the within county measure

of segregation to analyze whether there was a decrease in segregation in 12th

grade relative to 9th grade of the same cohort (i.e., three years before). That

is, we compute the within-county segregation coefficient W c for each county

c, using (5). Using the within-county segregation measure instead of the local

segregation index allows us to capture some of the movement of students across

schools between these grades, a relatively common phenomenon in the Texas

high school system.26

26Focusing on within school district segregation instead yields similar results. The draw-

back of using districts is that many districts contain only one school and the within-district

segregation measure would be by definition zero, as mentioned above.
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We estimate the following model, controlling for county (time-invariant)

heterogeneity:

W c
12t −W c

09(t−3) = βPOSTt + δt+ uc + εct, (8)

where W c
yt is the within-county segregation index at county c, grade y, at time

t, POSTt = 1 starting in 1997, t is a linear time trend, uc is a county fixed

effect, and εct is the error term. Table 4 presents the results, again for school

years 1994-1995 to 2000-2001 excluding 1997-1998. The coefficient associated

with the Top Ten Percent policy, β, is negative and significant. The magnitude

of the coefficient estimate increases when controlling for a linear time trend.

The Top Ten Percent policy is associated with a reduction in the within-county

segregation index in 12th grade compared to 9th grade of the same cohort of

10.4% of one standard deviation.27

Strategic Movement of Students

The evidence presented so far suggests a decrease in high school segregation

in 12th grade relative to that in 9th grade both within the same year and the

same cohort, coinciding with the introduction of the Top Ten Percent Law.

Our theoretical model in Section 2 would imply that this decrease was induced

by strategic movement of students across schools.

Changing schools is a relatively common phenomenon in Texas, however.

The fluctuation of students between high schools in Texas is high, at more than

10% of the student population per year before and after the policy change. Al-

most 50% of Texan students will change schools between the 8th and 12th

grades, the great majority of them because the following school grade is not

offered in their school (92% of moves). Indeed, the strategic movement of stu-

dents necessary to bring about the decrease in segregation could have been

simply part of the natural fluctuation (a simulation shows that strategic move-

ment of about 1.5% of the student population would easily suffice to generate

the effect). That is, students who have to leave one school for exogenous reasons

could choose there target schools strategically.

Another indicator for strategic movements may be the use of transfers:

transfer students are students whose district of residence is not the same as

the school district they attend. Indeed, as shown in Figure 7, the number of

27Shortening the time span and losing observations decreases the significance level, but the

coefficient remains negative. Using different unmasking strategies yields very similar results.
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transfer students has more than doubled since 1998, which is in line with our

expectations, even when one discounts charter school students.28

To examine the hypothesis that at least some students who changed schools

did so strategically, be it by applying for a transfer or in the course of natural

fluctuation, we will use student level individual data. Our hypothesis is that

students who change schools will prefer schools where they are more likely to

be in the top ten percent of their class. We are interested in whether the

introduction of the Top Ten Percent policy was associated with a change in the

characteristics of target schools of moving students, and whether the change

differed between lower and higher grades.

We examine prediction P.2 that after the introduction of the policy movers

in 11th and 12th grades were more likely to move to schools with less college

bound students and lower SAT average with respect to those who moved schools

in 9th and 10th grades.29 These variables are plausible indicators of a move to

an academically worse school.

We use the characteristics of schools in the year that the student transferred

to them, consistent with rational expectations. The results remain qualitatively

unchanged if we use instead school characteristics in the year before the move.

We therefore estimate equations with a dependent variable Yit that takes the

value 1 if this is indeed the case (e.g., school of destination has less college-

bound students than school of origin) and 0 otherwise:

Yit = β1 (G12i × POSTt) + β2 (G11i × POSTt) + γγγ′Gi + ρρρ′Xi + δδδ′T + εit, (9)

where Gi is a vector of grade dummies, Xi is a vector of individual and school

controls including ethnic group, economic disadvantage status, a dummy for

grade not offered, and a constant; the other variables are defined as above. We

cluster the standard errors at the school of origin level.

Because students move strategically if the benefits of moving outweigh its

cost, strategic movements should be particularly salient for moves within the

same school district, and less so among moves across school districts. To test

this prediction we split the sample of student moves into those that occur within

28Students attending a charter schools are usually considered to be transfer students. The

role of introducing charter schools in explaining the decrease in segregation appears rather

limited, see the robustness checks below.
29Note that universities in Texas require SAT scores even for Top Ten Percent applications,

so that the policy would not affect the probability of taking SAT exams, which were also

required by out-of-state universities.
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and across districts, and expect that treatment effects are greater for within

district moves.30

The results are presented in Table 5. Columns (1) to (3) show that the

probability of moving to a school with less college bound students than the

previous school increases for movers in the 11th and 12th grades by 2.8 and 6.4

percentage points, respectively, consistent with prediction P.3. This is amplified

under the Top Ten Percent rule, by 2.5 and 3.1 percentage points for 11th and

12th grades, respectively. This corresponds to an increase of 4.7% and 5.9%,

respectively. This effect is driven mainly by moves within districts. That is,

under the Top Ten Percent rule students in higher grades were significantly

more likely to move to academically worse schools within the same district.

Columns (4) to (6) show a similar pattern for SAT averages. Considering

the transition from 11th to 12th grade, the probability of moving to a school

with lower SAT average than the school of origin increases by 2.3 percentage

points for non-economically disadvantaged students. This corresponds to a

5.3% increase, given that the sample mean of the dependent variable is 0.435.

The effect is only significant for moves that occur within districts.

Taken together, these results very strongly suggest that students who have

moved schools in 11th and 12th grades were more likely to choose their new

school strategically than students in lower grades after the introduction of the

Top Ten Percent policy. In particular, the data are consistent with students

targeting schools with a lower proportion of college bound students and lower

SAT average. As expected, these strategic moves tend to occur within the

school districts, where moving costs would tend to be minimized.

Evidence on Unbiasedness of Flows

Our theory suggests that the decrease in Texas school segregation following the

introduction of the Top Ten Percent Law can be explained by arbitrage behavior

of students moving to schools that enhance their chances of graduating in the

top decile of their class. However, the theoretical argument for desegregation

also rests on the assumption of sufficient unbiasedness in the flows: moving

students should be close to ethnically representative of their schools and should

30Numbers of observations differ across regressions depending on the dependent variable

used, as not all variables are available for every school. For example, if students move from

a school without 12th grade, the information on the share of college bound students is not

available for that school, so that data for these students will be missing.
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be close to ethnically neutral in targeting destinations. This raises the question

of whether actual movements in Texas displays this sort of unbiasedness.

To address this question we first test for biased sampling using a linear

probability model that regresses an indicator of whether a student moving

from school s to school s′ at time t is from the majority (white + Asian) on

the share of the majority among the sending school’s students:

MAJit = β0 + β1MAJst + β2 (MAJst × POSTt) + γγγ′Gi + δδδ′T + εit, (10)

where the dependent variable MAJit takes the value 1 if a moving student is

from the majority and 0 otherwise; MAJst is the share of majority students in

i’s school of origin s, and the other variables are defined as above. We cluster

the standard errors at the school of origin level. If the sampling of school leavers

is in fact unbiased under the policy, then that probability will exactly reflect

the school majority share and we would expect the sum of the coefficients β1

and β2 to equal one.

Table 6 presents the result. In column (1), we show the correlation between

majority status of moving student and the proportion of majority in school of

origin without any additional controls. The estimated coefficient is very close to

1, consistent with unbiased sampling. The introduction of year and grade fixed

effects yields very similar results (column (2)). In column (4), we also allow

for this correlation to have changed after the implementation of the Top Ten

Percent Law. While we cannot rule out that majority students were slightly

oversampled after 1997, the coefficient of the interaction term is very close to

zero.

To test for unbiased targeting, we regress the residuals of equation (10) on

the majority share in the receiving school s′:

MAJit − M̂AJit = β1MAJs′t + β2 (MAJs′t × POSTt) + εit, (11)

where the dependent variable MAJit− M̂AJit is the residual of regression (10)

and MAJs′t is the share of majority students in i’s target school. Under unbi-

ased targeting we expect the coefficient to be zero, because the target school

composition will not affect the composition of incoming students conditional

on their origin school composition.31

31Based on our theory we would expect some correlation between the ethnic composition

of sending and targeted schools: Proposition 1 predicts that the expected quality of target

29



Columns (3) and (5) in Table 6 present the results. While the estimated

coefficients are statistically significant, they are very close to zero. The in-

troduction of the policy was not associated with a change of biasedness. To

interpret the coefficients we used actual student movements of 11th graders in

1998 to compute the effect of biased sampling and targeting on the regression

coefficients. Unbiased flows would produce coefficients of 1 and 0 in regressions

(10) and (11). Assuming a very small oversampling of majority students go-

ing to majority schools, by setting the majority share among moving students

to MAJst + 0.03MAJs′t, produced coefficients (1.006 and 0.020) that are very

close to the ones we observe.

This appears rather small and in line with the assumption of our theory, in

particular when recalling our examples accompanying Theorem 2. If the case of

biased targeting coupled with biased sampling considered there had generated

the data, we would by contrast obtain coefficients of 1 and 0.5, yet still have

observed reduced segregation.

As a robustness check we also run specification (10) including fixed effects

for pairs of origin and destination schools. Thus controlling for the association

between the actual flows and the share of majority students we would again

expect the coefficient β1 to equal 1 if there was no bias in sampling or targeting.

For computational purposes we have to restrict our analysis to samples of pairs

of schools, with enough movement between them. The results in Table 7 yield

coefficients close to 1, suggesting low bias, which is consistent with the results

obtained from our preferred specification.

Overall, the evidence suggests that school migration in Texas displayed

remarkably little ethnic bias, a finding that helps support the view that the

Unbiased Mixing Theorem can account for the reduction in segregation trends

in Texas high schools following the introduction of its Top Ten Percent Law.

schools increases with the quality of sending schools. If in turn ethnic composition is cor-

related with quality along the lines of the discussion following the Proposition, then when i

moves from s to s′, MAJst and MAJs′t are correlated, so we cannot simply add MAJs′t as

a control to equation (10).
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3.3 Robustness Checks

Charter Schools

The results presented above indicate a decrease in within-county segregation

that took place after the Top Ten Percent policy was introduced in 1998. An ob-

vious concern is that other changes affecting the segregation at lower and higher

grades differentially may have occurred at the same time. The only other major

policy that could potentially have had a similar aggregate effect and occurred

contemporaneously was the introduction of charter schools. Indeed, the first

charter schools were starting in 1996, but the first wave of expansion began in

1998, coinciding with the introduction of the Top Ten Percent Law. Charter

schools accept students from multiple school districts, and thus their prolif-

eration could contribute to a decrease in segregation, mechanically through

redistricting or by allowing students a possibility to strategically relocate.32

To test for a possible effect of charter schools on segregation we use two

different indicators for charter school prevalence. CHAc is a dummy variable

equal to 1 if there is a charter school in a county c in a given year. The

variable %STUDCHc is the percentage of students in a county c attending a

charter school, which accounts for the intensity in charter school prevalence.

We interact both variables with the indicator of the Top Ten Percent reform. A

significant coefficient estimate in any of these interaction terms would indicate

that charter schools were contributing to the within-county desegregation effect

associated with the Top Ten Percent reform.

Table 8 presents the results of the within-county segregation regression.

The coefficients for the Top Ten Percent policy are negative and significant

as before. Moreover, the existence of charter schools does not seem to reduce

within-county segregation, as the coefficient estimates are statistically indis-

tinguishable from zero at conventional levels, both when one considers the

presence of charter schools in a county and when one uses the percentage of

students enrolled in charter schools.33

32In Texas there are two types of charter schools. The great majority of charter schools are

open-enrollment. These are new schools that were assigned their own, new school district.

Before 1998 there were only 12 open-enrollment charter schools, but during the years 1996 to

2007 there were 328 open-enrollment charter schools active at some time. The second type

are charter campus high schools, which were created only in 2006, numbering 16 in 2007.
33The reduced number of charter schools generates large standard errors associated with

the estimates, but it also makes it unlikely that charter schools are responsible for the ob-
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Residential Segregation

Another potential concern is that the decrease in high school segregation might

simply reflect residential desegregation, given that students usually attend

schools in their district of residence. Using population data, we compute mu-

tual information indexes for the total population and for the group aged 15-19.

The indexes are calculated by comparing the composition of the population in a

given county with the composition of the population of the state. For compar-

ison we also plot the mutual information index for 9th to 12th grades with the

county as the unit of observation. Figure 4 shows that, if anything, residential

segregation has increased over the period 1990 to 199934 and cannot explain

the decrease in segregation among the student population over the period.

Dropout rates

A change in dropout rates could potentially be a confounding effect. Possible

differences in the dropout rates between majority and minority students are

taken care of by our differences-in-differences approach. A possible concern

is that the trends were significantly different between ethnic groups in 9th

and 12th grades. Unfortunately, the data do not allow us to compute grade

specific dropout rates. However, Figure 5 shows that dropout rates for 7th

to 12th graders in Texas are low and the trends are very similar for different

ethnic groups. Thus it seems unlikely that dropout rates drive the reduction

in segregation we observe in the data.

4 Conclusion

Theory and evidence show that a policy intended to achieve ethnic integration

at the college level may actually have contributed to achieving it in the high

schools. By basing admission on relative performance at high school, the Texas

Top Ten Percent policy appears to have induced an increase in the rate at

which students to move from higher- to lower-quality schools. Coupled with

evidently low differences in the ethnic composition of movers relative to their

origin schools and low ethnic bias in targeting behavior, the result is a reduction

served decrease in segregation.
34Starting in 2000, individuals were able to choose more than one race/ethnicity. Therefore,

we had to limit the analysis to the period 1990-1999.
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in high-school ethnic segregation.

It is worth asking whether the movements of students needed to account

for the observed change in high school segregation following the introduction

of the Top Ten Percent Law are enough to account for oft-noted the diversity

shortfalls in the University of Texas system. A numerical simulation shows

that the observed drop in segregation could have been generated by strategic

movement by as little as 1,500 students (of about 20,000) per year per grade. On

the other hand, comparing post-policy admission numbers at the UT campuses

at Austin, Dallas, and A & M to those expected if the minority share had

remained equal to the one under affirmative action, produces a shortfall of

around 650 minority students.

The apparent excess of movement can be accounted for if one realizes that

in practice the effects of an individual arbitrage decision are uncertain. For

at the time a decision to move has to be made, it is likely that one is unsure

about one’s final performance that will be used to determine admission. Then

one might contemplate a move of schools even if one is below the threshold

for eligibility in both schools, as there is a chance to get over the bar, and a

better chance in a worse school. By the same token, someone just above the

percentile threshold might move as insurance against the possibility of falling

below it.

The experience of apparently unintended consequences in Texas suggests

that top-N percent policies may be an effective tool for achieving broader social

goals than was previously understood: they offer a novel way to integrate high

schools. As it happens, similar policies are being rolled out around the world.

For instance, Sciences Po in France uses preferential admission based on zip

codes; the University of Bristol in the UK offers lower entry standards for

applicants from lower-performing schools; and Brazilian state universities set

aside places for students who come from public schools. Although differing in

detail from top-n policies, all of these “school-based” policies generate similar

incentives for some high school students to move and will therefore affect high

school integration.

A natural question that arises concerns the optimal design of school-based

policies if the intent is to accomplish school integration.35 Since policies such

35Obviously we are abstracting from the weighing of moving costs against the ostensible

benefits of integration, as well as constraints to policy emanating from limited capacities of

target high schools.
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as those at Sciences Po and Bristol are likely too small to have much impact,

and an increase in the number of universities participating in such schemes

would be required. This corresponds to increases in the policy threshold n in

our model: given the capacity k, increasing n increases cross-school flows, so

as long as movement is unbiased, segregation falls with participation.

Increasing the capacity of the university system need not have the same

effects: since movement is bounded by the capacity, there is clearly a range of

(low) capacities where increasing capacity (and n to keep up) increases move-

ment. At the other extreme, when capacity is equal to the entire population,

there is no movement incentive, so the relationship between capacity and move-

ment is non-monotonic.

Finally, analysis of optimal policy needs to acknowledge the timing of deseg-

regation. As our analysis shows, in the absence of lengthy residency require-

ments, students tend to delay their movements to the later grades. Policies

that lengthen these requirements in order to increase exposure during high

school among students of differing backgrounds must contend with the evident

increase in moving costs, which would tend to reduce flows.
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Appendix 1: Proofs

Neutrality Theorem: Proof of Existence of an Equilib-

rium

In the text we have established that any equilibrium must satisfy neutrality. To

ensure this is not a vacuous result, the following provides a proof of existence.

First, we establish that all equilibria are characterized by cutoff values âs in

each school s that determine which students move out. Using this structure we

then establish existence of an equilibrium satisfying neutrality.

Lemma A. Any equilibrium has cutoff values âs, one for each school s such

that:

(i) a student in school s is admitted to the U if a ≥ âs.

(ii) Define a = mins{âs}. Then, σ(a, s, s) = 1 if a < a, or a ≥ âs.

(iii)
∑

s′ 6=s σ(a, s, s′) = 1 if a ∈ [a, âs).
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Proof. (i) For a given strategy profile σ, there are new distributions F̂s(a)

and new masses q̂s of students. Given these, if a student with a in school

s is admitted to the U (either through the top-n policy or through at-large

admission) then a student with a′ > a in school s is admitted to the U as well.

Define by âs the minimal ability such that a student in school s is admitted to

the U .

(ii) By construction a student a < a cannot be admitted in any school s′,

hence σ(a, s, s) = 1 is a strict best response for such students, because moving

is costly. A student from school s with a ≥ âs can be admitted in her initial

school; hence σ(a, s, s) = 1 is a strict best response for such a student.

(iii) Students from school s in a ∈ [a, âs) are not admitted if they stay and

get admitted in another school if they move; since the cost of moving is smaller

than the benefit of being admitted, they should move to another school with a

cutoff less that their ability; hence
∑

s′ 6=s σ(a, s, s′) = 1.

Under neutrality only students with a ≥ a∗ are admitted to the U . This

implies that a = a∗. Since any equilibrium satisfies neutrality, cutoffs lie in the

interval [a∗, a].

Lemma A states that any equilibrium entails a set of thresholds {â1, . . . , âS}.
In each school, the set of students who attend the U are natives with attainment

above the threshold plus any “immigrants”; other students may leave. By

Lemma A and neutrality all students below a∗ remain in their initial school.

Denote by âNs the lowest achievement admitted in equilibrium via the top-n

rule: 1−F̂s(â
N
s ) = n. In case n < k, some students are admitted at large. Let âLs

be the lowest such student from school s. In equilibrium, we must have âLs = âLs′

for any two schools s, s′ admitting students at large; if instead âLs < âLs′ < âNs′ ,

there are students in s who are admitted at large, while higher attainment

students originally in s′ (those in (âLs , â
L
s′) could also have been admitted at large

simply by staying put). Thus we write âL for the common at large threshold,

and âs = min{âNs , âL}. Note that
∑

s q̂sF̂s(â
N
s ) =

∑
s qsFs(â

N
s ) = 1 − n and∑

s qsFs(a
∗) = 1− k.

Immigrants to s consist of those who, given the threshold in their own

school s′, find s to be the cheapest school to move to with a threshold below

their attainment. Thus the measure of students who migrate from s′ to s

is qs′(Fs′(âs′) − Fs′(âs)) if âs′ > âs and s = arg min{s′′|âs′>âs′′} c(s
′, s′′) (since

c(s′′, s) 6= c(s′′s′) for all s, s′ the minimum is unique). Define Ms
s′(â) = qs′ if

âs′ > âs and s = arg min{s′′|âs′>âs′′} c(s
′, s′′), and 0 otherwise.
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The threshold to be admitted in equilibrium through the top-n rule, âNs ,

has to satisfy:

qs(1− Fs(â
N
s )) +

∑
s′

Ms
s′(â)(Fs′(min{âNs′ , âL})− Fs′(â

N
s ))

= nqs(1− Fs(â
N
s )) + n

∑
s′

[Ms
s′(â)(Fs′(min{âNs′ , âL})− Fs′(â

N
s ))]

+ nqs max{Fs(â
N
s )− Fs(â

L), 0}+ nqsFs(a
∗).

That is, in each school s the natives above the top-n threshold plus the immi-

grants (who only move in if they are admitted through the top-n rule) constitute

N percent of the equilibrium population, which consists of natives and immi-

grants admitted through the top-n rule, natives admitted at large and natives

who are not admitted to the U . The last two terms on the right hand side

denote those admitted at large, if any, and those who are not admitted at all.

Letting ωs ≡ n
1−nqsFs(a

∗) and â = (âN1 , . . . , â
N
S , â

L) we can rewrite this

condition as the requirement that the “excess demand” in school s be zero:

zs(â) ≡ qs(1− Fs(â
N
s )) +

∑
s′

[Ms
s′(â)(Fs′(min{âNs′ , âL})− Fs′(â

N
s ))]

− n

1− n
qs max{Fs(â

N
s )− Fs(â

L), 0} − ωs = 0.

The common threshold for at-large admission âL has to satisfy the capacity

constraint; thus

zS+1(â) ≡
∑
s

qs max{Fs(â
N
s )− Fs(â

L), 0} − (k − n) = 0.

Let a = (a1, . . . , aS+1) ∈ [a∗, a]S+1. Note that continuity of the c.d.f’s {Fs}
implies z(a) = (z1(a), . . . , zS+1(a)) is continuous. Define a map B : [a∗, a]S+1 →
[a∗, a]S+1 by

Bs(a) = max[min(zs(a) + as, a), a∗] for s = 1, . . . , S and

BS+1(a) = max[min(zS+1(a) + aS+1, a), a∗].

B(·) is continuous and therefore by Brouwer’s theorem has a fixed point â =

(âN1 , . . . , â
N
S , â

L) ∈ [a∗, a]S+1. We claim that â is an equilibrium for our model,

i.e., that z(â) = 0.

Start with zS+1(â). First, âL 6= a for k > n; if instead âL = a, we would

have BS+1(â) = max{a − (k − n), a∗} < a, a contradiction. But for k = n,

zS+1(â) = 0 when âL = a.
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Second, if âL ∈ (a∗, a), then zS+1(â) + âL ∈ (a∗, a) as well; assuming oth-

erwise leads to a contradiction: if zS+1(â) + âL ≥ a then BS+1(â) = a 6= aL.

Similarly, supposing that zS+1(â) + a∗ ≤ a∗ would imply BS+1(â) = a∗ 6= aL.

Therefore zS+1(â) = 0, as desired.

Third, if âL = a∗, then zS+1(â) = 0, because max{Fs(â
N
s ) − Fs(a

∗), 0} =

Fs(â
N
s ) − Fs(â

∗), so
∑

s qs(Fs(â
N
s ) − Fs(â

∗)) = k − n by definition (since∑
s qsFs(a

∗) = 1− k and 1− n =
∑

s q̂sF̂s(â
N
s ) =

∑
s qsFs(â

N
s )).

Hence, for any fixed point â we have that zS+1(â) = 0.

Turning to zs(â
N), note first that âNs 6= a for any s; if instead âNs = a, we

would have Bs(â) = max{a− n
1−nqs(1−Fs(â

L))− ωs, a
∗} < a, a contradiction.

Second, if âNs ∈ (a∗, a), then, to the case of âL above, Bs(â) = zs(â) + âNs ,

which implies zs(â) = 0.

Third, if âNs = a∗, then zs(â)+a∗ < a, else Bs(â) = a > a∗, a contradiction.

Thus if zs(â) + a∗ ≥ a∗, then Bs(â) = zs(â) + a∗ = a∗, so zs(â) = 0, as desired.

The final possibility is that zs(â) + a∗ < a∗, but this implies zs(â) < 0, which

we now show leads to a contradiction.

We have shown zs(â) ≤ 0 for all s = 1, . . . , S; if zs(â) < 0 for some s,

which can only happen if âs = a∗, then
∑

s≤S zs(â) < 0. Denote by Ms =∑
s′ [Ms

s′(â)(Fs′(min{âNs′ , âL}) − Fs′(a
∗))] the mass of immigrants into s. The

mass of “emigrants” Xs′ from s′ is qs′(Fs′(min{âNs′ , âL}) − Fs′(a
∗)) (recall we

are supposing âNs = a∗). Since the system is closed,
∑

sMs =
∑

sXs. Then

0 >
∑
s≤S

zs(â) =
∑
s≤S

[qs(1− Fs(â
N
s )) +Ms −

n

1− n
qs
(
max{Fs(â

N
s )− Fs(â

L), 0}+ Fs(a
∗)
)
]

=
∑
s≤S

[qs(1− Fs(â
N
s )) +Xs −

n

1− n
qs
(
max{Fs(â

N
s )− Fs(â

L), 0}+ Fs(a
∗)
)
]

=
∑
s≤S

[qs(1− Fs(â
N
s )) + qs(Fs(min{âNs , âL})− Fs(a

∗))

− n

1− n
qs max{Fs(â

N
s )− Fs(â

L), 0} − n

1− n
qsFs(a

∗)]

=
∑
s≤S

qs

[
1− 1

1− n
Fs(a

∗)

]
−

∑
s:âNs ≥âL

qs
Fs(â

N
s )− Fs(â

L)

1− n

Since zS+1(â) can be written as
∑

s:âNs ≥âL
qs[Fs(â

N
s ) − Fs(â

L)] − (k − n), and

we have established that zS+1(â) = 0, using
∑

s qsFs(a
∗) = 1− k, the last line

vanishes, and we obtain 0 >
∑

s≤S zs(â) = 0, a contradiction. We conclude

that zs(â) = 0.
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Proof of The Unbiased Mixing Theorem

Let xs,s′ be the mass of students from school s who move to school s′; ms,s′ the

mass of students entering school s from school s′; xs the mass of students leaving

school s; ms the mass of students entering school s. Since moving decisions

depend only on ability and distance between schools but not on group, the

ratios of the masses of students from different groups in school s′ entering

school s from school s′ are equal to the ratios of their initial proportions in

school s′. That is, the proportion of group g among students moving to s from

s′ is pgs′ and among students who stay at s by pgs.

The flows must balance, that is

ms =
∑
s′

xs′,s and
∑
s

xs =
∑
s

ms. (12)

In equilibrium, accounting for the equilibrium movement of students, we have

new proportions of groups within school s:

p̂gs =
(qs − xs)pgs +

∑
s′ ms,s′p

g
s′

qs − xs +ms

. (13)

where qs − xs + ms is the equilibrium mass of students in school s. The new

segregation index is

Î = A1(p)− A2(p)
∑
s

(qs − xs +ms)H(p̂s).

Hence the change in segregation indexes Î − I is proportional to∑
s

(qsH(ps)− (qs − xs +ms)H(p̂s))

The new proportion of students of background g can be written as,

p̂gs =
qs − xs

qs − xs +ms

pgs +
∑
s′

ms,s′

qs − xs +ms

pgs′ ,

concavity of H(p) and the fact that the weights are independent of g imply

that

H(p̂s) ≥
qs − xs

qs − xs +ms

H(ps) +
∑
s′

ms,s′

qs − xs +ms

H(ps′).
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where the inequality is strict if ms 6= 0 since ps 6= ps′ . Hence, we have

Î − I <
∑
s

(
xsH(ps)−

∑
s′

ms,s′H(ps′)

)
=
∑
s

xsH(ps)−
∑
s

∑
s′

ms,s′H(ps′)

=
∑
s

xsH(ps)−
∑
s′

(∑
s

ms,s′

)
H(ps′)

= 0

where the strict inequality is due to the assumption that a positive mass of

students move (hence ms 6= 0 for some s), and that ps 6= ps′ for all schools s, s′.

The last equality follows (12). Hence we have Î − I < 0 as claimed.

Proof of the Proposition

As shown in lemma A, the equilibrium is characterized by a set of thresholds

{âN1 , . . . , âNS , âL}. Students in school s with a ≥ âNs are admitted through the

top-n policy; if n < k there will be students admitted at large with achievement

a ∈ [âL, âNs ). Hence, the cutoff for admission to the U in school s is âs =

min{âL, âNs } and cutoffs are at most equal to âL.

Note that all schools s with cutoff âs = âL cannot have students moving

in: any student who would be admitted to the U through s would also have

been admitted in their initial school and, because of the moving cost, would

have strictly preferred to stay there. The population of students admitted

from such a school is therefore qs(1−Fs(â
L)), and its equilibrium population is

qs(1− Fs(â
L)) + qsFs(a

∗), since all students in [a∗, âL] have incentives to move

elsewhere.

For schools that have students admitted at large, with âNs ≥ âL, it must be

that
qs(1− Fs(â

L)

qs(1− Fs(âL)) + qsFs(a∗)
≥ n,

i.e., a student at the at-large threshold must be outside the top N percent.

Denote the set of schools that admit students at large by L; given âL a

school s ∈ L if 1 − Fs(â
L) ≥ n

1−nFs(a
∗). Note that s ∈ L implies that s′ ∈ L

if s′ < s, since by hypothesis 1− Fs′(â
L) > 1− Fs(â

L) ≥ n
1−nFs(a

∗). Therefore

there is an index s̄ such that s ∈ L if s ≤ s̄, and all s ≤ s̄ have âs = âL.
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The complementary set T of schools s > s̄ have thresholds âs = âNs < âL

and admit students only through the top-n policy. Denote by [1] the school in

T that has the highest equilibrium threshold, and assume it is not school s̄+ 1.

The only students who would like to move to school [1] are students a ≥ â[1],

but below the cutoff in their own school; the only candidates are students from

schools in L. However, since [1] > s̄ + 1, students in schools in L with ability

in [â[1], â
L) prefer to move to school s̄+ 1, since this also ensures admission but

does so at lower cost. Hence, [1] receives no new students, while school s̄ + 1

may have new students; denote them by ms̄+1. Then

1− Fs̄+1(âs̄+1) +ms̄+1

1− Fs̄+1(âs̄+1) +ms̄+1 + Fs̄+1(a∗)
=

1− F[1](â[1])

1− F[1](â[1]) + F[1](a∗)
= n

Cross multiply and cancel terms to get

F[1](a
∗)(1− Fs̄+1(âs̄+1)) + F[1](a

∗)ms̄+1 = Fs̄+1(a∗)(1− F[1](â[1]))

or

1− Fs̄+1(âs̄+1) +ms̄+1

1− F[1](â[1])
=
Fs̄+1(a∗)

F[1](a∗)

The right hand side is less than 1 by FOSD. The left side weakly exceeds
1−Fs̄+1(âs̄+1)

1−F[1](a[1])
, since ms̄+1 ≥ 0. Thus, 1−Fs̄+1(âs̄+1)

1−F[1](a[1])
< 1, implying

Fs̄+1(âs̄+1) > F[1](â[1])

But â[1] > âs̄+1 implies

Fs̄+1(â[1]) > Fs̄+1(âs̄+1) > F[1](â[1]),

which contradicts FOSD.

The above argument can be repeated for schools greater than s̄ + 1: sup-

posing that school [2] ∈ T is not school s̄ + 2 leads to a similar contradiction,

and so on through school S.

Monotonicity in âs and students’ preference for moving to the closest school

proves (ii).

For uniqueness, start with âL and derive then cutoffs âs for s > s̄ construc-

tively. From the proof of the Neutrality Theorem we know that the equilibrium

cutoff âL satisfies ∑
s∈L

qs(Fs(â
N
s )− Fs(â

L)) = k − n. (14)
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The thresholds for admission through the top-n rule in schools s ∈ L are:

qs(1− Fs(â
N
s )

qs(1− Fs(âL) + qsFs(a∗)
= n.

Therefore Fs(â
N
s ) = 1− n(1− Fs(â

L) + Fs(a
∗)) and (14) becomes∑

L

qs((1− n)(1− Fs(â
L))− nFs(a

∗)) = k − n, (15)

The left hand side of (15) is decreasing in âL because both the set L = {s :

1− Fs(â
L) ≥ n

1−nFs(a
∗)} is non-increasing and the summands are positive and

decreasing in âL. For âL = a∗, the LHS is strictly greater than k−n since there

is at least one school s with 1 − Fs(a
∗) < n. On the other hand, at âL = a

the set L is empty so the LHS is zero. Hence, there is a unique âL solving

(15) whenever n < k (if n = k there is a continuum of solutions [âN1 , a], where

1− F1(âN1 ) = n
1−nF1(a∗); set âL = âN1 in this case). Given the solution âL, the

set L is defined (possibly comprising only school 1), and âs = âL for s ∈ L.

For s ∈ T , admission is through the top-n rule so that cutoffs are defined

by:
qs(1− Fs(âs)) +ms

qs(1− Fs(âs)) +ms + qsFs(a∗)
= n.

which is equivalent to

1− Fs(âs) +
ms

qs
=

n

1− n
Fs(a

∗). (16)

Proceeding recursively, given âs−1, note that ms =
∑

s′≤s−1 qs′ [Fs′(âs−1) −
Fs′(âs)] from part (ii), and (16) can therefore be written

1−
∑
s′≤s

qs′

qs
Fs′(âs) +

∑
s′≤s−1

qs′

qs
Fs′(âs−1) =

n

1− n
Fs(a

∗). (17)

Since the LHS of (17) is strictly decreasing in âs, the solution âs is unique given

âs−1, which establishes uniqueness of the sequence {âs}.
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Appendix 2: Tables and Figures
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Figure 5: Dropout Rates
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Figure 6: Time series of the mutual information index for 10th and 11th grades
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Figure 7: Share of students in 8th to 12th grades with a district of enrollment

different from district of residence, 1993-2007. The dashed line corresponds to
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attending charter schools. Source: TEA.
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Table 1: Descriptive Statistics

Before (1994-1996) After (1998-2000)

Mean Std. N Mean Std. N

Dev. Dev.

A. School Level Data

A.1. Local segregation index with respect to region

9th grade 0.134 0.132 4,563 0.150 0.151 5,000

10th grade 0.134 0.142 4,253 0.149 0.160 4,633

11th grade 0.128 0.139 4,103 0.140 0.153 4,411

12th grade 0.127 0.138 4,086 0.136 0.150 4,335

9th to 12th grades 0.131 0.138 17,005 0.144 0.154 18,379

9th and 12th grades 0.130 0.135 8,649 0.144 0.151 9,335

B. County Level Data

B.1. Within-county segregation index

12th - 9th grade 0.000 0.012 756 -0.001 0.016 756

B.2. Charter schools

Presence 0.008 0.089 756 0.095 0.294 756

Percentage of students 0.000 0.000 756 0.002 0.011 756

C. Individual Level Data

C.1. Probabiliy of moving to a school with ... than school of origin

less college bound students 0.514 0.500 72,749 0.546 0.498 78,289

lower SAT average 0.377 0.485 64,714 0.491 0.500 67,097

Notes: All the differences between the before and after means are statistically signifi-

cant at the 1% level, apart from the within-county segregation index that is statistically

significant at the 5% level.
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Table 2: Fixed effect estimation, 9th to 12th grades, school years

from 1994 to 2000 (excl. 1997)

Dep. Var.: M r
ys: Local segregation index with respect to region

(1) (2) (3) (4)

G12× POST -0.004* -0.004* -0.004* -0.004*

(0.002) (0.002) (0.002) (0.002)

G11× POST -0.004* -0.004*

(0.002) (0.002)

G10× POST -0.003 -0.003

(0.002) (0.002)

Constant 0.135*** 0.135*** 0.136*** 0.136***

(0.001) (0.001) (0.001) (0.001)

Fixed effects:

School-grade yes yes yes yes

region-year no yes no yes

Year yes no yes no

Mean of Dep. Var. 0.137 0.137 0.138 0.138

Observations 17,984 17,984 35,384 35,384

School-grade 3,722 3,722 7,274 7,274

r-squared (within) 0.002 0.011 0.001 0.008

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%.

Robust standard errors in parentheses. The masked observations were

converted to zero. The variable Gy × POST = 1 if y = {10, 11, 12} and

t ≥ 1997 and 0 otherwise.
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Table 3: Placebo analysis: Fixed effect estimation, 9th to 12th

grades, school years from 1990 to 1996 (excl. 1993)

Dep. Var.: M r
ys: Local segregation index with respect to region

(1) (2) (3) (4)

G12× T93 0.002 0.002 0.002 0.002

(0.002) (0.002) (0.002) (0.002)

G11× T93 0.001 0.001

(0.002) (0.002)

G10× T93 0.001 0.001

(0.002) (0.002)

Constant 0.125*** 0.126*** 0.127*** 0.127***

(0.001) (0.001) (0.001) (0.001)

Fixed effects:

School-grade yes yes yes yes

region-year no yes no yes

Year yes no yes no

Mean of Dep. Var. 0.127 0.127 0.128 0.128

Observations 16,435 16,435 32,441 32,441

School-grade 3,301 3,301 6,454 6,454

r-squared (within) 0.001 0.012 0.000 0.008

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%.

Robust standard errors in parentheses. The masked observations were

converted to zero. The variable Gy × T93 = 1 if y = {10, 11, 12} and

t ≥ 1993 and 0 otherwise.
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Table 4: Fixed effect estimation, 12th-9th grade, school

years from 1994 to 2000

Dep. Var.: Within-county segregation

W c
12t −W c

9(t−3)

(1) (2)

POST -0.001** -0.004**

(0.001) (0.002)

Constant 0.000 -1.020

(0.000) (0.773)

County fixed effect yes yes

Linear time trend no yes

Mean of Dep. Var. -0.001 -0.001

Observations 1,512 1,512

r-squared (within) 0.004 0.006

Number of school districts 252 252

Notes: * significant at 10%, ** significant at 5%, *** signifi-

cant at 1%. Robust standard errors in parentheses. The masked

observations were converted to zero, but results are similar us-

ing the other unmasking strategies. The variable POST = 1 if

t ≥ 1997 and 0 otherwise.
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Table 6: Testing the unbiasedness assumption

Dep. Var.: MAJi MAJi MAJi − M̂AJ i MAJi MAJi − M̂AJ i

(1) (2) (3) (4) (5)

MAJs 0.996*** 0.996*** 0.994***

(0.002) (0.002) (0.002)

MAJs′ 0.026*** 0.025***

(0.002) (0.002)

MAJs × POST 0.004**

(0.002)

MAJs′ × POST 0.001

(0.001)

Constant 0.024*** 0.026*** 0.028***

(0.001) (0.002) (0.002)

Fixed effects

Year no yes no yes no

Grade no yes no yes no

Observations 1,464,216 1,464,216 1,464,216 1,464,216 1,464,216

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%. The dependent variable MAJi

is equal to 1 if student moving from school s to s′ is from majority group (i.e., white or Asian) and 0 oth-

erwise. The dependent variable MAJi − M̂AJ i corresponds to the residuals from the previous column.

Robust standard errors clustered at the school of origin level in parentheses.
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Table 8: Fixed effect estimation, 12th-9th grade, school years 1994

to 2000

Dep. var.: Within-county segregation W c
t12 −W c

(t−3)9

(1) (2) (3)

POST -0.004** -0.004** -0.004**

(0.002) (0.002) (0.002)

CHA -0.000

(0.006)

POST ∗ CHA 0.002

(0.006)

%STUDCH -0.126

(1.342)

POST ∗%STUDCH 0.234

(1.339)

Constant -1.020 -0.982 -0.889

(0.773) (0.780) (0.778)

County fixed effect yes yes yes

Linear time trend yes yes yes

Mean of Dep. Var. -0.001 -0.001 -0.001

Observations 1,512 1,512 1,512

r-squared (within) 0.034 0.034 0.038

Counties 252 252 252

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%.

robust standard errors in parentheses. The masked observations were con-

verted to zero, but results are similar using the other unmasking strategies.

The variable POST = 1 if t ≥ 1997 and 0 otherwise. CHA is a dummy

variable equal to 1 if there is a charter school in the county and 0 other-

wise. The variable %STUDCH is the percentage of students in a county

attending a charter school.
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