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Net Primary Production of a
Forest Ecosystem with

Experimental CO2 Enrichment
Evan H. DeLucia,1* Jason G. Hamilton,1 Shawna L. Naidu,1

Richard B. Thomas,2 Jeffrey A. Andrews,3 Adrien Finzi,3
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The concentration of atmospheric carbon dioxide was increased by 200 mi-
croliters per liter in a forest plantation, where competition between organisms,
resource limitations, and environmental stresses may modulate biotic respons-
es. After 2 years the growth rate of the dominant pine trees increased by about
26 percent relative to trees under ambient conditions. Carbon dioxide enrich-
ment also increased litterfall and fine-root increment. These changes increased
the total net primary production by 25 percent. Such an increase in forest net
primary production globally would fix about 50 percent of the anthropogenic
carbon dioxide projected to be released into the atmosphere in the year 2050.
The response of this young, rapidly growing forest to carbon dioxide may
represent the upper limit for forest carbon sequestration.

Combustion of fossil fuels and deforestation,
particularly in tropical regions, are rapidly
increasing the concentration of CO2 in the
atmosphere (1, 2). Trees that use the C3

mechanism of photosynthesis are carbon-lim-
ited at the current atmospheric CO2 concen-
tration (3); therefore, the stimulation of pho-
tosynthesis by elevated CO2 may increase the
capacity of forests to store carbon in wood
and soil organic matter. Because of their im-
posing contribution to global productivity
(2), forests have the potential to reduce the
anthropogenic increase in atmospheric CO2.

Seedlings or saplings exposed to two
times the current atmospheric concentration
of CO2 in growth chambers, greenhouses, or
open-top chambers have ;54% greater pho-
tosynthesis and ;31% greater biomass (4).
These enhancements are considerably re-
duced when plants receive suboptimal
amounts of other important resources such as
nitrogen (5). Most studies of tree rings (6)

show no increase in growth rate in response
to the increase in atmospheric CO2 that has
occurred from the pre-industrial concentra-
tion of ;280 ml liter21 to the current 360 ml
liter21

. Resource limitations in natural eco-
systems and other ecological interactions in-
cluding competition (7) may constrain the
potential for forests to respond to increasing
concentrations of CO2.

To examine the response of an intact for-
est ecosystem to projected elevated concen-
trations of CO2, we installed a gas-delivery
system in a 13-year-old loblolly pine (Pinus
taeda L.) plantation in the Piedmont region of
North Carolina (35°979N 79°099W) (8). The
free-air CO2 enrichment (FACE) system (9)
increases the concentration of atmospheric
CO2 in 30-m-diameter experimental plots
nested within this continuous pine forest (Fig.
1). Each FACE ring (plot) consists of a large
circular plenum that delivers air to an array of
32 vertical pipes. The pipes extend from the
forest floor through the 14-m-tall forest can-
opy and contain adjustable ports at 50-cm
intervals. These ports are tuned to control the
atmospheric concentration of CO2 ([CO2])
through the entire volume of forest. In the
three elevated CO2 plots, CO2 was injected to
maintain the atmosphere at ambient [CO2]
plus 200 ml liter21 (;560 ml liter21); three
ambient CO2 plots were treated identically
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but without the addition of CO2 (10). Unlike
closed growth chambers or open-top cham-
bers, the FACE system controls atmospheric
[CO2] without changing other variables.
Moreover, its size permits the experimental
manipulation of an entire forest ecosystem,
including vegetation and soil components.
The injection of CO2 was initiated on 27
August 1996.

At monthly intervals beginning in March

1996 we measured the diameter of 203 can-
opy pine trees distributed across the ambient
and elevated plots (11). In 1997 and 1998 we
made additional measurements of 112 sub-
canopy hardwood trees. Before the fumiga-
tion was initiated, the seasonal increase in
basal area was similar for canopy trees in the
ambient and elevated plots (Fig. 2). The basal
area increment began to diverge soon after
the fumigation started in August 1996, and by
1997 and 1998 the average basal areas for
trees in the elevated plots were ;2.6 and
4.5% larger, respectively, than those in the
ambient plots.

Diameters at the beginning and the end of
each growing season were used to calculate the
relative basal area increment of each tree
[RBAI 5 (BADecember – BAJanuary)/BAJanuary,
where BA is basal area] (12). A mild drought in
1997 and a severe drought during the summer

of 1998 [modified Palmer drought index: 23
(13)] caused lower RBAI in the ambient plots
relative to 1996 (Table 1). The addition of CO2

to the experimental plots in the late summer and
fall of 1996 produced no statistical effect on
RBAI between ambient and elevated plots
(0.094 compared with 0.098 cm2 cm22 year21)
in that year. During the two full years of expo-
sure, however, elevated CO2 caused significant
increases in RBAI. The ;26% stimulation in
RBAI was similar to the growth stimulation
observed for potted loblolly pine seedlings
maintained at two times [CO2] but with subop-
timal soil N and P, and considerably less than
the maximum response observed for this spe-
cies under optimal growth conditions (14, 15).
For the subcanopy hardwood species, a stimu-
lation in RBAI by elevated CO2 was statistical-
ly detectable only in Ulmus alata (for 1997:
ambient 5 0.055, elevated 5 0.072 cm2 cm22

Fig. 1. Free-air CO2 enrichment (FACE) rings in
a pine plantation in North Carolina, USA. Each
ring is 30 m in diameter and circumscribes
about 100 trees. The distance from the single
ring in the southwest (top right) to the two
rings in the north (bottom) is ;500 m. The
single ring in the background is a prototype.
There are six experimental rings; three rings
receive ambient air and three receive ambient
plus 200 ml liter21 CO2 (photo: Will Owens).

Table 1. The mean (61 SD) relative basal area increment (RBAI; cm2 cm22 year21) for loblolly pine trees
growing in ambient and elevated atmospheric CO2 plots. The average RBAI was calculated for 30 to 40
trees in each plot. The RBAI for ambient and elevated plots for each year was compared with a
paired-sample t test (one-tailed, N 5 3).

Year
Mean RBAI (cm2 cm22 year21)

Percent
CO2 effect

P
Ambient Elevated

1996 0.094 6 0.024 0.098 6 0.011 4.2 0.342
1997 0.076 6 0.020 0.095 6 0.010 25.0 0.044
1998 0.054 6 0.011 0.068 6 0.012 25.9 0.007

Table 2. Net primary production (production of dry matter; g m22 year21) for a pine ecosystem under
ambient or elevated atmospheric CO2 during fumigation in 1997 and 1998. Subcanopy hardwoods are
trees with a diameter $2.5 cm. The “sapling” category includes trees (,2 m tall), shrubs, and vines.
Litterfall is the amount of dead biomass in foliage, branches, and reproductive structures falling to the
ground annually. Net primary production (“Production”) is the sum of all components. For years where
data were not available for one or more components, they were not included in the calculation of NPP
(for example, fine roots in 1996 and 1997 and subcanopy hardwoods and sapling production in 1996). The
“Percent CO2 effect” is the percentage difference between the elevated and ambient plots. Values for
ambient and elevated plots were compared with a paired-sample t test (one-tailed, N 5 3).

Category Year
NPP (g m22 year21) Percent

CO2
effect

P
Ambient Elevated

Increments
Canopy pines 1996 976 1002 3 0.40

1997 879 1087 24 0.14
1998 685 857 25 0.09

Subcanopy hardwoods 1997 75 105 40 0.14
1998 118 155 31 0.16

Saplings, shrubs, and vines 1997 8 4 2100 0.26
1998 9 7 222 0.29

Fine roots 1998 43 80 86 0.02

Turnover
Litterfall 1996 660 588 211 0.13

1997 529 533 1 0.45
1998 613 739 21 0.08

Fine roots 1998 195 245 26 0.21

Production
1996 1637 1590 23 0.30
1997 1491 1727 16 0.11
1998 1662 2082 25 0.01

Fig. 2. Average basal area (61 SE) for loblolly
pine trees growing in ambient (N 5 102) and
elevated (N 5 101) CO2. Values are expressed
as the percentage of the initial basal area. The
insert shows the absolute difference between
the basal area of elevated and ambient trees,
and the arrows indicate when the CO2 fumiga-
tion was initiated.
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year21, P 5 0.07, N 5 24; for 1998: ambient 5
0.09, elevated 5 0.118 cm2 cm22 year21, P 5
0.027).

Net primary production represents the flux
of carbon into ecosystems. Some of this carbon
is returned to the atmosphere by respiration
from soil microbes and herbivores—the re-
maining carbon is stored as net ecosystem pro-
duction. Net primary production (NPP; gross
photosynthesis minus plant respiration) for the
ambient and elevated CO2 plots was calculated
as the summation of the annual increment in
standing biomass of trees (including roots), sap-
lings, shrubs, and vines, plus the turnover of
foliage (litterfall) and fine roots (16). We cal-
culated the biomass of the dominant pine trees
from diameter using site-specific allometric
equations (17), and equations from the litera-
ture were used to convert diameter to total
biomass for the subcanopy hardwoods (18).
Herbivory was not included in our estimates,
but losses by herbivory from forest ecosystems
typically are ,10% (19).

Net primary production for the entire eco-
system in 1998 was 1662 g of dry matter per
square meter per year in control plots and
2082 g m22 year21 in experimental plots (Ta-
ble 2). Our estimates of biomass increment for
the canopy pines (685 to 1087 g m22 year21)
are within the range reported for other loblolly
pine forests (20). The annual biomass incre-
ment in canopy pines plus litterfall accounted
for 78% of NPP (1998), followed by contribu-
tions from fine roots, subcanopy hardwoods,
and saplings, shrubs, and vines. Elevated CO2

caused a consistent increase in NPP during the
two full years of treatment (1997 and 1998).
There was a trend of higher fine-root turnover
and a significant increase in fine-root increment
(86%) in the elevated-CO2 plots in 1998. High-
er fine-root turnover under CO2 enrichment is
consistent with higher rates of CO2 efflux from
the soil in fumigated compared with ambient
plots [1066 6 46 g of C per square meter per
year in 1997 and 928 6 19 gC m22 year21 in
1998 in ambient plots; 1183 6 8 gC m22

year21 in 1997 and 1175 6 132 gC m22

year21 in 1998 in elevated plots; paired t test
within each year: P 5 0.04 for both years, N 5
3 (21)]. Model simulations of terrestrial ecosys-
tems predict an 8% increase in NPP for the
contiguous United States (22) and a ;9% in-
crease for temperate coniferous forests with a
doubling of CO2 (23). It was therefore striking
to find 25% stimulation in NPP with only a
1.5-fold increase in CO2.

It is unclear if the response of this young,
fast-growing southeastern forest will be sus-
tained over many years or if other vegetation
types will respond similarly. In simulations
with process-based models (24), the initial
increases in forest NPP after a step doubling
of CO2 declined dramatically with time as
tree growth exceeded the rate of soil nitrogen
mineralization. Similarly, individual trees ex-

posed for long periods to elevated CO2 (25)
and forests near natural CO2 sources (26)
show a rapid attenuation of the CO2 growth
response with age. Thus, the growth stimula-
tion observed for this pine ecosystem under
CO2 enrichment may represent the maximum
response. If it applies to forests globally, the
25% increase in NPP that we observed sug-
gests that enhanced uptake of CO2 by forests
will not exceed 50% of the CO2 emitted from
fossil fuel combustion in the year 2050, when
the atmospheric [CO2] is expected to reach
560 ml liter21 (1, 27).
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