Teaching using a Hybrid Course Model: Effective use of ALEKS to Engage and Prepare Students for Class

Binyomin Abrams

Senior Lecturer, Department of Chemistry

Boston University

abramsb@bu.edu

"Getting students engaged and guiding their thinking in the classroom is just the beginning of true learning, however. This classroom experience has to be [supplemented] with extended "effortful study," where the student spends considerably more time than is possible in the classroom developing expert-like thinking and skills."

- Carl Wieman

Outline

- Motivation for using a hybrid course model for general chemistry
- Description of the course model for engaging students
- Course assessment data to illustrate/define the need
- How ALEKS fits in to this hybrid model / course implementation

Incoming students struggle

Some students struggle in their first years in college because

- they don't know how to balance four classes
- they don't understand what we want from them
- they think that learning means showing up
- they hold on to major misconceptions about learning
- they lack some of the more fundamental skills from high school
- they need us to help them bridge the gap from high school to college

Students struggle to prepare for class

Students are unsuccessful at preparing for class because

- they don't have a gauge for what is expected of them
- they "read", but like it's a story
- they "do problems", but rarely connect it to the course material
- they don't seek help and are afraid to make mistakes
- they have a poor metacognitive sense

Students struggle to prepare for class

Students are unsuccessful at preparing for class because

- they don't have a gauge for what is expected of them
- they "read", but like it's a story
- they "do problems", but rarely connect it to the course material
- they don't seek help and are afraid to make mistakes
- they have a poor metacognitive sense

Students are most able to succeed when

- they prepare for class
- they are given context for their work
- they are given explicit expectations (low or high)
- they are supported and given guidance
- they are challenged to find answers for themselves

Our students crave the passive mode

- Students accustomed to working hard, but ineffectively
 - Highlighter
 - Flash cards
 - Rewriting notes
 - Looking a problem solutions

*Adapted from National Training Laboratories. Bethel, Maine

- They interpret a lack of specific assigned work as an invitation to do little or no active work
- Courses that penalize group success de-incentivize many important forms of active learning

Our students cr

Goals for a hybrid model

- Remediate for missing pre-requisite knowledge / skills
- Engage students in active preparation for lecture
- Free-up lecture time for preconceptions, misconceptions, and deeper investigations
- Follow-up from lecture time with challenging problems to ensure that students are learning

Hybrid model in CH101/102 at Boston University

- Prime students in lecture:
 - Give context and guidance
 - Set explicit expectations for learning outcomes (don't come back unless...)
- 2. Students work at home
 - Remediate for fundamental skills in math, physical science
 - Learn foundation skills to prepare for the next class
 - Cover basic topics to free up lecture time
- 3. Quiz students on their learning from work at home
- 4. Develop and extend during next lecture
 - Use class time to address confusion
 - Extended concepts
- 5. Integrated problem-solving and application of learning

ALEKS is ideal for helping students prepare for class

- Prepare students through active preparation of
 - Fundamental, pre-requisite concepts
 - "Skill"-type topics that don't require lecture time
- One-on-one guidance of student effort eliminates challenges due to poor metacognitive sense
- Adaptive students only do what they need
 - Remediation of foundation concepts only for students in need
 - Extra time on basics for students who struggle
 - Focus on areas of need for average students
 - Focus on mastery of concepts, not completion
- Stand-alone or completely eBook integrated

Addressing the need for remediation in preparation

Fall 2014 CH101 Cohort at Boston University

- 800+ students enrolled
- Mostly incoming freshmen
- Average SAT 1950
- Average high school GPA A⁻

Good with basic arithmetic

Mathematics (93% Mastered)	Mastered	Not Mastered	Ready to Learn
Integer multiplication and division	<u>99%</u>	<u>1%</u>	<u>1%</u>
Simplifying a fraction	<u>99%</u>	<u>1%</u>	<u>1%</u>
Equivalent fractions	<u>99%</u>	<u>1%</u>	<u>1%</u>
Signed fraction multiplication: Advanced	<u>95%</u>	<u>5%</u>	<u>4%</u>
Signed decimal addition and subtraction with 3 numbers	<u>98%</u>	<u>2%</u>	<u>1%</u>
Finding a percentage of a whole number without a calculator: Basic	<u>98%</u>	<u>2%</u>	<u>1%</u>
Evaluating expressions with exponents: Problem type 1	<u>97%</u>	3%	<u>2%</u>
Ordering numbers with positive exponents	<u>75%</u>	<u>25%</u>	<u>24%</u>
Ordering numbers with negative exponents	<u>79%</u>	<u>21%</u>	<u>20%</u>

- Exponents are a problem for 20%+
- Similar problems with algebra and symbolic manipulation

Graphing is a problem for 35%+

Graphing (73% Mastered)

Graphing a line given its equation in slope-intercept form	<u>96%</u>	4%	<u>2%</u>
Graphing a line through a given point with a given slope	<u>64%</u>	<u>36%</u>	<u>27%</u>
Determining the slope of a line given its graph	<u>81%</u>	<u>19%</u>	<u>9%</u>
Finding x- and y-intercepts of a line given the equation: Advanced	<u>65%</u>	<u>35%</u>	<u>27%</u>
Writing an equation of a line given the y-intercept and another point	<u>61%</u>	<u>39%</u>	<u>20%</u>

Determining the slope of a line given its graph

Find the slope of the line graphed below.

Almost all students struggle with electrostatics

Electrostatics (19% Mastered)

<u>Understanding that opposite charges attract and like charges repel</u>	<u>31%</u>	<u>69%</u>	<u>69%</u>
Understanding how electrostatic energy scales with charge and separation	<u>7%</u>	93%	<u>25%</u>

Units and scientific notation are big problem areas

	•		
Scientific Notation (66% Mastered)	Mastered	Not Mastered	Ready to Learn
Multiplication of a decimal by a power of ten	<u>96%</u>	<u>4%</u>	4%
Division of a decimal by a power of ten	94%	<u>6%</u>	2%
Converting between decimal numbers and numbers written in scientific notation	<u>86%</u>	<u>14%</u>	<u>9%</u>
Multiplying and dividing numbers written in scientific notation	<u>66%</u>	<u>34%</u>	<u>19%</u>
Calculating positive powers of scientific notation	<u>36%</u>	<u>64%</u>	<u>30%</u>
Finding negative powers of scientific notation	<u>19%</u>	<u>81%</u>	<u>15%</u>
SI Units (26% Mastered)			1
Knowing the dimension of common simple SI units	<u>37%</u>	<u>63%</u>	<u>55%</u>
Understanding the purpose of SI prefixes	<u>32%</u>	<u>68%</u>	<u>59%</u>
Knowing the value of an SI prefix as a power of 10	<u>40%</u>	<u>60%</u>	<u>25%</u>
Interconversion of prefixed and base SI units	<u>28%</u>	<u>72%</u>	<u>0%</u>
Interconversion of prefixed SI units	<u>28%</u>	<u>72%</u>	0%
Interconverting compound SI units	<u>8%</u>	<u>92%</u>	<u>17%</u>
Interconverting temperatures in Celsius and Kelvins	<u>9%</u>	<u>91%</u>	<u>56%</u>

Units and scientific notation are big problem areas

Interconversion of prefixed and base SI units

An optician measures the diameter of her patient's pupil. The diameter is $0.0037\,\mathrm{m}$. What is the diameter in millimeters? Write your answer as a decimal.

Interconverting temperatures in Celsius and Kelvins

The metal mercury becomes superconducting at temperatures below $4.153\,\mathrm{K}$.

Calculate the temperature at which mercury becomes superconducting in degrees Celsius. Be sure your answer has the correct number of significant digits.

Students can't work with measurements in math

Measurement Math (34% Mastered)

Addition and subtraction of measurements	<u>27%</u>	<u>73%</u>	<u>1%</u>
Simplifying unit expressions	<u>74%</u>	<u>26%</u>	<u>18%</u>
Multiplication and division of measurements	<u>0%</u>	<u>100%</u>	<u>7%</u>

Measurement Uncertainty (22% Mastered)

Counting significant digits	<u>26%</u>	<u>74%</u>	<u>57%</u>
Rounding to a given significant digit	<u>54%</u>	<u>46%</u>	<u>45%</u>
Counting significant digits when measurements are added or subtracted	<u>11%</u>	<u>89%</u>	<u>69%</u>
Counting significant digits when measurements are multiplied or divided	<u>15%</u>	<u>85%</u>	<u>38%</u>
Adding or subtracting and multiplying or dividing measurements	<u>2%</u>	<u>98%</u>	<u>9%</u>
Counting significant digits when measurements are added or subtracted Counting significant digits when measurements are multiplied or divided	11% 15%	<u>89%</u> <u>85%</u>	<u>69%</u> <u>38%</u>

Multiplication and division of measurements

Decide whether each proposed multiplication or division of measurements is possible. If it *is* possible, write the result in the last column of the table.

proposed multiplication or division	Is this possible?	result
$\frac{140. \text{ g}^2}{0.020 \text{ kg}} = ?$	yes no	

Simple mass, volume, density relationships

Mass, Volume and Density (21% Mastered)	Mastered	Not Mastered	Ready to Learn
Estimating the volume in liters of a square prism object	<u>28%</u>	<u>72%</u>	<u>3%</u>
Finding the side length of a cube from its volume in liters	<u>6%</u>	<u>94%</u>	<u>16%</u>
Calculating volume by combining the volume of simple shapes	9%	<u>91%</u>	<u>13%</u>
Calculating mass density	<u>34%</u>	<u>66%</u>	<u>11%</u>
Using mass density to find mass or volume	28%	<u>72%</u>	<u>15%</u>

Using mass density to find mass or volume

A chemistry student needs $85.0\,\mathrm{g}$ of acetone for an experiment. By consulting the *CRC Handbook of Chemistry and Physics*, the student discovers that the density of acetone is $0.790\,\mathrm{g} \cdot \mathrm{cm}^{-3}$. Calculate the volume of acetone the student should pour out.

Be sure your answer has the correct number of significant digits.

Basic principles from physical science

Atomic Theory (28% Mastered)

<u>Distinguishing elements and compounds</u>	<u>65%</u>	<u>35%</u>	<u>34%</u>
Distinguishing compounds and mixtures	20%	<u>80%</u>	<u>45%</u>
Distinguishing chemical and physical change	<u>17%</u>	<u>83%</u>	<u>48%</u>
Distinguishing solid, liquid and gas phases of a pure substance	<u>12%</u>	88%	<u>87%</u>

Summer Prep using ALEKS

- Prepare a pie with basic concepts (math, physical science)
- These are not concepts traditionally covered in other packages
- Set expectation of student-driven review of pre-requisites
- Get students working a little ahead of first week's lecture
- Due date
- 97% mastered by week 2
- 85%+ of students acknowledge benefit from using ALEKS

Course structure

- Summer assignment due after week 1
- Weekly Objectives due (each objective contains 5 20 topics)
- Periodic Assessments every 2 4 weeks (not more frequent)
- 10% of course credit for ALEKS
 - 5 x 1% for objective completion (effort = points)
 - 5% for end-of-course *Mastery* (knowledge = points)

Grade	% Students
D	3.7 ± 1.6
F	1.5 ± 0.7
W	9.1 ± 1.2
D/F/W	14.3% ± 2.3%

Average course grade: B-/C+

Changes in lectures and office hours as a result of **ALEKS**

Representative questions from summer cohort (no ALEKS):

- What keeps NaCl(s) together?
- How do you write the formula for iron(III) sulfate?

Representative questions from fall cohort (students use ALEKS):

- Why aren't Na⁺ and Cl⁻ ions attracted together in solutions?
- Why do iron atoms lose different numbers of electrons?

Questions?

Objectives

Available Topics	ALEKS Objectives	Due Date 🛈
Textbook Chapters open all / close all Math and Physics Mathematics Algebra Expressions Linear Equations Quadratic and Radical Equations	open all / close all Summer Prep (79 topics) Math and Physics Measurement Matter Atoms, Ions and Molecules Stoichiometry	09/07/2014 11:59 pm
Trigonometry Vectors Electrostatics Measurement	Prep for Week 3 (6 topics) A Atoms, Ions and Molecules Stoichiometry Electronic Structure	09/14/2014 11:59 pm
Matter Atoms, Ions and Molecules	Prep for Week 4 (6 topics) Edit Stoichiometry	09/21/2014 11:59 pm
Stoichiometry Simple Reactions Thermochemistry Electronic Structure	Prep for Week 5 (2 topics) Edit Stoichiometry Simple Reactions	09/28/2014 11:59 pm
	N	lew Objective Folder

Learning college chemistry is hard for most students

- Chemistry is frequently taken in 9th or 10th grade
- Few high school students are introduced to chemistry by properlyprepared educators
- Learning chemistry requires substantial fundamentals
 - Mathematics skills
 - Physics concepts
 - Basic chemistry skills
- Students have poor metacognitive sense
- All of the above create apprehension and anxiety about beginning college-level chemistry

Specific goals for summer ALEKS

- Review fundamentals for students not taking chemistry recently
- Homogenize elementary skills in math and physical science
- Give students confidence to prepare for class
- Emphasize the importance of problem solving and homework

