Boston University’s Chemical Writing Program: Designing and Implementing a Scalable Writing-Intensive Science Course

CH 111/112

Joseph Bizup
jbizup@bu.edu

Binyomin Abrams
abramsb@bu.edu

Boston University
February 25, 2013
“Writing is the final step in the scientific process.”

--Binyomin Abrams, 2009
Intrinsic Connection Between Doing Science and Writing Science

When all the students in the class obtain the same results to an activity, and there is only one scientifically acceptable outcome, the learners quickly realize that they must somehow generate, copy, or paraphrase the knowledge claim that is desired by the teacher. Thus, writing in this genre can easily become a rote activity, especially when the students have no opportunity to determine the appropriate methods for the investigation, ways to display the data, or new meanings for the data.

[I]t may be helpful to understand disciplinary ways of doing and the connection to knowing and writing by looking at an illustration of a concrete form of doing: laboratory experiments. A lab experiment is designed to engage students in a particular way of doing by which they will learn about the scientific concept of the lab and also how to apply an empirical mode of reasoning about the physical world. Thus, the lab experience is a way of doing that is directed toward a way of knowing. It is primarily in writing the lab report, however, that doing becomes knowing. . . . It provides an opportunity for students to reflect on the relationship between the lab and the scientific concept of the lab and to frame the doing of the lab in the structure of scientific reasoning.

In our view, successful inquiry-based writing requires three modifications to the inquiry lab. First, lab courses should give students practice in forms of writing actually used by scientists. Second, writing tasks must be aligned with the activity of the lab so that students have something meaningful to say. And third, student writing must have a real audience.

Multiple Considerations and Challenges to Developing and Implementing a Writing-Intensive Chemistry Class

Pedagogical
- Need to theorize relationship among learning goals: content instruction, mastery of laboratory techniques, and writing
- What *principles* should govern pedagogy and assignment sequence?

Institutional and Curricular
- Who “owns” the course?
- What is the relationship to the first-year writing requirement (2-sem sequence of writing seminars)?
- What will CH111/112 “count” for?
- What is the relationship to other chemistry courses?

Disciplinary: pieties, provincialisms, and skepticisms
- Scientists: “Do we (you) *really* care about writing, like we say we do?”
- Humanists: “Are they (you) *really* qualified to teach writing, as we are?” “Will it (the class, the writing) look like what I teach?”

Practical
- Scale?
- Workload for students, teachers?
- Staffing and division of labor?
- Funding?
- Sustainability?
CH111/CH112 Course Structure

Standard, honors-level first-year chemistry course sequence
- 4 credits per course
- Lecture (3 hrs), discussion (1 hr), pre-lab lecture (1 hr), and lab (4 hrs)
- Students take WR100/WR150 (required first-year writing courses) concurrently
- “Track-skipping” forbidden (into parallel intro-chem courses 101/102, 109/110)

Types of assignments in lab portion of the course
- Post-lab questions (5 in fall, 2 in spring)
- Formal lab reports (5 in fall, 4 in spring)
- Capstone project (team-based research project in spring semester)
 - Total assignments in fall: 10
 - Total assignments in spring: 6 + Capstone project
Staffing Structure and Division of Labor

Issues we considered when designing staffing structure:

- Solitary teacher (humanities model) won’t work
- Inconsistent enrollments semester to semester, year to year
- Scaling instruction to large lecture/lab course
- Supply of potential qualified Writing Assistants

To address these issues, we relied on a division of labor among instructors:

- Course Instructor: Full-Time Lecturer in Chemistry
 Hiring, training, and content creation
- Writing Assistants: Graduate students in science fields (Chem and others)
 Confer with students; comment on, grade writing
- Teaching Assistants: Graduate students in Chemistry
 Grade papers on technical merits
- Writing Consultant: Full-Time Lecturer in Writing Program
 Provide advice on writing pedagogy, assist CI in training WA’s, contribute to prep of writing manual
Enrollments, Staff, and Costs

<table>
<thead>
<tr>
<th>Year</th>
<th>Year 0 08-09</th>
<th>Year 1 09-10</th>
<th>Year 2 10-11</th>
<th>Year 3 11-12</th>
<th>Year 4 12-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student enrollments</td>
<td>57/49</td>
<td>76/65</td>
<td>88/80</td>
<td>58/48</td>
<td>86/76</td>
</tr>
<tr>
<td>Number of WAs</td>
<td>-</td>
<td>5/4</td>
<td>9/8</td>
<td>6/5</td>
<td>9/8</td>
</tr>
<tr>
<td>Number of course TAs</td>
<td>2/2</td>
<td>2.5/2</td>
<td>2.5/2</td>
<td>3.5/2.5</td>
<td>4/3</td>
</tr>
<tr>
<td>Cost of program (total)</td>
<td>-</td>
<td>$4,000</td>
<td>$22,000</td>
<td>$15,000</td>
<td>$22,500</td>
</tr>
<tr>
<td>Cost (per student)</td>
<td>-</td>
<td>$28</td>
<td>$130</td>
<td>$142</td>
<td>$139</td>
</tr>
<tr>
<td>Total writing hours/student</td>
<td>20/20</td>
<td>20/20</td>
<td>20/24</td>
<td>15/22</td>
<td>10/20</td>
</tr>
<tr>
<td>Approx. pages of writing</td>
<td>55/50</td>
<td>55/50</td>
<td>45/45</td>
<td>25/35</td>
<td>15/35</td>
</tr>
</tbody>
</table>
Year 0 (2008-09) Assignment Sequence: Baseline, Standard Lab Assignments

- Formal lab reports for every other lab (~5 per semester)
- Students receive a five-page “Basic Guide to Writing Lab Reports”
- No explicit, in-class writing instruction
- ~20 hours, ~50 pages per student/semester
Year 1 (2009-10) Assignment Sequence: Follows Conceptual Logic of Scientific Content

- Meetings with writing assistants were optional
- Instruction was all done in-class (pre-lab lecture), i.e. no handouts
- No new writing assignments, no fewer writing assignments – all work was done on the existing lab reports
- Final approval for the three-year pilot in Spring 2010
Cumulative Lessons Learned

- Year 1 – Follows Conceptual Logic of the Scientific Content
 - Need mandatory, one-on-one writing instruction
 - In-class instruction is insufficient
Based on Lessons Learned, We Defined Formal Program Structure

- Students receive writing instruction in lecture
- Handouts help students to develop their skills and guide their writing
- First-drafts of papers sent to writing assistants and to course TA’s
- Writing assistants make comments on drafts and return to students. Course TA’s grade the technical merits of the first drafts
- Students read comments and then conference with their writing assistant
- Final drafts, based on comments and the conference, are submitted to the writing assistants

An unexpected challenge: Orchestrating delivery of feedback and grading on technical aspects of papers and on writing.
Year 2 (2010-11) Assignment Sequence: Follows Rhetorical Logic of Scientific Communication

- Assignment order guided by the scientific content
- Meetings with writing assistants now mandatory
- Brief handouts distributed to complement in-class instruction
- Same writing assignments as previous years:

Fall Assignments
1) Program Description
2) Introduction
3) Experimental
4) Results
5) Discussion
6) Conclusion

Spring Assignments
7) Abstract
8) Research proposal
9) JACS Communication
10) Lab manual chapter
11) Powerpoint presentation
Cumulative Lessons Learned

- Year 1 – Follows Conceptual Logic of the Scientific Content
 - Need mandatory, one-on-one writing instruction
 - In-class instruction is insufficient

- Year 2 – Follows Rhetorical Logic of Scientific Communication
 - Need to help students learn how to write like scientists instead of students
 - Need to provide explicit instruction in “skills” of science writing
Year 3 (2011-12) Assignment Sequence: Follows Craft Logic of Scientific Practice

- Training manual developed based on WA questions and comments
- Skills-based ("craft") assignments (tables/figures, library skills, outlines)
- Framing the writing exercises in terms of relevant scientific pursuit (motivation vs. objective vs. pedagogic purpose)

<table>
<thead>
<tr>
<th>Fall Assignments</th>
<th>Spring Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Scientific writing</td>
<td>7) Conclusion</td>
</tr>
<tr>
<td>2) Introduction</td>
<td>8) Full journal article</td>
</tr>
<tr>
<td>3) Library skills</td>
<td>9) Research proposal</td>
</tr>
<tr>
<td>4) Experiment</td>
<td>10) Abstract</td>
</tr>
<tr>
<td>5) Tables, Figures, and Equations</td>
<td>11) JCE article</td>
</tr>
<tr>
<td>6) Results and Discussion</td>
<td>12) Powerpoint presentation</td>
</tr>
</tbody>
</table>
Cumulative Lessons Learned

- Year 1 – Follows Conceptual Logic of the Scientific Content
 - Need mandatory, one-on-one writing instruction
 - In-class instruction is insufficient
- Year 2 – Follows Rhetorical Logic of Scientific Communication
 - Need to help students learn how to write like scientists instead of students
 - Need to provide explicit instruction in “skills” of science writing
- Year 3 – Follows Craft Logic of Scientific Practice
 - First-year students in their first semester cannot put themselves in the role of a scientist
 - “Use it or lose it”: Students need to periodically revisit old material
Year 4 (2012/13) Assignment Sequence: Follows Multiple Logics, Just-In-Time Learning

- Less is more – students do not write unnecessary assignments
- Order of assignments reflects a just-in-time learning approach
- Explicit instruction on the form and language of scientific writing
- Later assignments make explicit reference to prior work and learning

Fall Assignments
1) Scientific writing
2) Figures and equations
3) “Checklists”
4) Results and Discussion
5) Conclusion

Spring Assignments
6) The scientific literature and References
7) Introduction
8) Research proposal
9) Experimental
10) Chem. Ed. article
11) Powerpoint presentations
Cumulative Lessons Learned

- **Year 1** – Follows Conceptual Logic of the Scientific Content
 - Need mandatory, one-on-one writing instruction
 - In-class instruction is insufficient

- **Year 2** – Follows Rhetorical Logic of Scientific Communication
 - Need to help students learn how to write like scientists instead of students
 - Need to provide explicit instruction in “skills” of science writing

- **Year 3** – Follows Craft Logic of Scientific Practice
 - First-year students in their first semester cannot put themselves in the role of a scientist
 - “Use it or lost it”: Students need to periodically revisit old material

- **Year 4** – Follows Multiple Logics, Just-In-Time Learning
 - Current year
 - Preliminary feedback indicates higher student achievement in desired areas
Cumulative Lessons Learned

- Year 1 – Follows Conceptual Logic of the Scientific Content
 - Need mandatory, one-on-one writing instruction
 - In-class instruction is insufficient
- Year 2 – Follows Rhetorical Logic of Scientific Communication
 - Need to help students learn how to write like scientists instead of students
 - Need to provide explicit instruction in “skills” of science writing
- Year 3 – Follows Craft Logic of Scientific Practice
 - First-year students in their first semester cannot put themselves in the role of a scientist
 - “Use it or lost it”: Students need to periodically revisit old material
- Year 4 – Follows Multiple Logics, Just-In-Time Learning
 - Current year
 - Preliminary feedback indicates higher student achievement in desired areas
 - But we feel pretty good....
Enrollments, Staff, and Costs

<table>
<thead>
<tr>
<th></th>
<th>Year 0 08-09</th>
<th>Year 1 09-10</th>
<th>Year 2 10-11</th>
<th>Year 3 11-12</th>
<th>Year 4 12-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student enrollments</td>
<td>57/49</td>
<td>76/65</td>
<td>88/80</td>
<td>58/48</td>
<td>86/76</td>
</tr>
<tr>
<td>Number of WAs</td>
<td>-</td>
<td>5/4</td>
<td>9/8</td>
<td>6/5</td>
<td>9/8</td>
</tr>
<tr>
<td>Number of course TAs</td>
<td>2/2</td>
<td>2.5/2</td>
<td>2.5/2</td>
<td>3.5/2.5</td>
<td>4/3</td>
</tr>
<tr>
<td>Cost of program (total)</td>
<td>-</td>
<td>$4,000</td>
<td>$22,000</td>
<td>$15,000</td>
<td>$22,500</td>
</tr>
<tr>
<td>Cost (per student)</td>
<td>-</td>
<td>$28</td>
<td>$130</td>
<td>$142</td>
<td>$139</td>
</tr>
<tr>
<td>Total writing hours/student</td>
<td>20/20</td>
<td>20/20</td>
<td>20/24</td>
<td>15/22</td>
<td>10/20</td>
</tr>
<tr>
<td>Approx. pages of writing</td>
<td>55/50</td>
<td>55/50</td>
<td>45/45</td>
<td>25/35</td>
<td>15/35</td>
</tr>
</tbody>
</table>
Conclusions: Beliefs and Questions

What We Believe

- Sequence must be consistent with multiple logics:
 - conceptual logic of the scientific subject
 - rhetorical logic of scientific communication
 - craft logic of scientific thinking
- Less is more.
- Teaching real forms of science writing is most effective.
- “Just in Time” teaching/learning is most effective.
- Make no presuppositions of prior understanding about chemistry or writing.
- Possible to teach writing through smart division of labor.
- Three-year development cycle.

Open Questions

- How do we ensure consistency of interactions with writing assistants?
- How should content and writing be weighted in grading?
- What metrics can we use to assess retention of learning and transfer to other chemistry courses?
- How can department achieve vertical integration in chemistry curriculum?
- How does department reach chemistry students who do not take the writing-intensive intro sequence?